Abstract Electromagnetic ion cyclotron (EMIC) waves are important for Earth's inner magnetosphere as they can effectively drive relativistic electron losses to the atmosphere and energetic (ring current) ion scattering and isotropization. EMIC waves are generated by transversely anisotropic ion populations around the equatorial source region, and for typical magnetospheric conditions this almost always produces field‐aligned waves. For many specific occasions, however, oblique EMIC waves are observed, and such obliquity has been commonly attributed to the wave off‐equatorial propagation in curved dipole magnetic fields. In this study, we report that very oblique EMIC waves can be directly generated at the equatorial source region. Using THEMIS spacecraft observations at the dawn flank, we show that such oblique wave generation is possible in the presence of a field‐aligned thermal ion population, likely of ionospheric origin, which can reduce Landau damping of oblique EMIC waves and cyclotron generation of field‐aligned waves. This generation mechanism underlines the importance of magnetosphere‐ionosphere coupling processes in controlling wave characteristics in the inner magnetosphere.
more »
« less
Electromagnetic ion cyclotron emission from ion-scale magnetic holes
Ion-scale magnetic holes are nonlinear plasma structures commonly observed in the solar wind and Earth's magnetosphere. These holes are characterized by the magnetic field depletion filled by hot, transversely anisotropic ions and electrons and are likely formed during the nonlinear stage of ion mirror instability. Due to the plasma thermal anisotropy within magnetic holes, they serve as a host of electromagnetic ion cyclotron waves, whistler-mode waves, and electron cyclotron harmonic waves. This makes magnetic holes an important element of the Earth's inner magnetosphere, where electromagnetic waves generated within may strongly contribute to energetic ion and electron scattering. Such scattering, however, will modify the hot-ion distribution that is trapped within magnetic holes and responsible for the magnetic field stress balance. Therefore, hot ion scattering within magnetic holes likely determines the hole lifetime. In this study, we investigate how ion scattering by electromagnetic waves affects the stress balance and lifetime of magnetic holes. For illustration, we used typical characteristics of magnetic holes, ion populations, and ion cyclotron waves observed in the Earth's magnetosphere. We have demonstrated that ion distribution isotropization via scattering by waves does not change significantly magnetic hole magnitude, but ion losses due to scattering into the atmosphere may limit the hole life-times to 10–30 min in the Earth's inner magnetosphere.
more »
« less
- Award ID(s):
- 2329897
- PAR ID:
- 10586824
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 31
- Issue:
- 7
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Relativistic electron precipitation to the Earth's atmosphere is an important loss mechanism of inner magnetosphere electrons, contributing significantly to the dynamics of the radiation belts. Such precipitation may be driven by electron resonant scattering by middle-latitude whistler-mode waves at dawn to noon; by electromagnetic ion cyclotron (EMIC) waves at dusk; or by curvature scattering at the isotropy boundary (at the inner edge of the electron plasma sheet anywhere on the nightside, from dusk to dawn). Using low-altitude ELFIN and near-equatorial THEMIS measurements, we report on a new type of relativistic electron precipitation that shares some properties with the traditional curvature scattering mechanism (occurring on the nightside and often having a clear energy/L-shell dispersion). However, it is less common than the typical electron isotropy boundary and it is observed most often during substorms. It is seen equatorward of (and well separated from) the electron isotropy boundary and around or poleward of the ion isotropy boundary (the inner edge of the ion plasma sheet). It may be due to one or more of the following mechanisms: EMIC waves in the presence of a specific radial profile of the cold plasma density; a regional suppression of the magnetic field enhancing curvature scattering locally; and/or electron resonant scattering by kinetic Alfvén waves.more » « less
-
Statistical Properties of Quasi‐Periodic Electromagnetic Ion Cyclotron Waves: ULF Modulation EffectsAbstract Electromagnetic ion cyclotron (EMIC) waves effectively scatter relativistic electrons in Earth's radiation belts and energetic ions in the ring current. Empirical models parameterizing the EMIC wave characteristics are important elements of inner magnetosphere simulations. Two main EMIC wave populations included in such simulations are the population generated by plasma sheet injections and another population generated by magnetospheric compression due to the solar wind. In this study, we investigate a third class of EMIC waves, generated by hot plasma sheet ions modulated by compressional ultra‐low frequency (ULF) waves. Such ULF‐modulated EMIC waves are mostly observed on the dayside, between magnetopause and the outer radiation belt edge. We show that ULF‐modulated EMIC waves are weakly oblique (with a wave normal angle ) and narrow‐banded (with a spectral width of of the mean frequency). We construct an empirical model of the EMIC wave characteristics as a function of ‐shell and MLT. The low ratio of electron plasma frequency to electron gyrofrequency around the EMIC wave generation region does not allow these waves to scatter energetic electrons. However, these waves provide very effective (comparable to strong diffusion) quasi‐periodic precipitation of plasma sheet protons.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves are commonly observed in the Earth's magnetosphere and play a significant role in regulating relativistic electron fluxes. The waveform of EMIC waves comprises amplitude‐modulated wave packets, known as “subpackets.” Despite their prevalence, the underlying physics and associated particle dynamics for subpacket formation remain poorly understood. In this study, using Van Allen Probe A observations, we present several rising‐tone EMIC wave events to reveal the downward frequency chirping between adjacent subpackets. By performing a hybrid simulation, we demonstrate for the first time that these wave properties are associated with the oscillation of proton holes in the wave gyrophase space induced by cyclotron resonance. The oscillation modulates the energy transfer between waves and particles, establishing a direct link between subpacket formation in cyclotron waves and nonlinear wave‐particle interactions. This new understanding advances our knowledge of subpacket formation in general and its broader implications in space plasma physics.more » « less
-
Abstract Certain forms of solar wind transients contain significant enhancements of dynamic pressure and may effectively drive magnetosphere dynamics, including substorms and storms. An integral element of such driving is the generation of a wide range of electromagnetic waves within the inner magnetosphere, either by compressionally heated plasma or by substorm plasma sheet injections. Consequently, solar wind transient impacts are traditionally associated with energetic electron scattering and losses into the atmosphere by electromagnetic waves. In this study, we show the first direct measurements of two such transient‐driven precipitation events as measured by the low‐altitude Electron Losses and Fields Investigation CubeSats. The first event demonstrates storm‐time generated electromagnetic ion cyclotron waves efficiently precipitating sub‐relativistic and relativistic electrons from >300 keV to 2 MeV at the duskside. The second event demonstrates whistler‐mode waves leading to scattering of electrons from 50 to 700 keV on the dawnside. These observations confirm the importance of solar wind transients in driving energetic electron losses and subsequent dynamics in the ionosphere.more » « less
An official website of the United States government

