Abstract Encapsulation of metal nanoparticles within oxide materials has been shown as an effective strategy to improve activity, selectivity, and stability in several catalytic applications. Several approaches have been proposed to encapsulate nanoparticles, such as forming core‐shell structures, growing ordered structures (zeolites or metal‐organic frameworks) on nanoparticles, or directly depositing support materials on nanoparticles. Here, a general nanocasting method is demonstrated that can produce diverse encapsulated metal@oxide structures with different compositions (Pt, Pd, Rh) and multiple types of oxides (Al2O3, Al2O3‐CeO2, ZrO2, ZnZrOx, In2O3, Mn2O3, TiO2) while controlling the size and dispersion of nanoparticles and the porous structure of the oxide. Metal@polymer structures are first prepared, and then the oxide precursor is infiltrated into such structures and the resulting material is calcined to form the metal@oxide structures. Most Pt@oxides catalysts show similar catalytic activity, demonstrating the availability of surface Pt sites in the encapsulated structures. However, the Pt@Mn2O3sample showed much higher CO oxidation activity, while also being stable under aging conditions. This work demonstrated a robust nanocasting method to synthesize metal@oxide structures, which can be utilized in catalysis to finely tune metal‐oxide interfaces. 
                        more » 
                        « less   
                    This content will become publicly available on January 14, 2026
                            
                            Partial PdAu nanoparticle embedding into TiO 2 support accentuates catalytic contributions from the Au/TiO 2 interface
                        
                    
    
            Despite the broad catalytic relevance of metal–support interfaces, controlling their chemical nature, the interfacial contact perimeter (exposed to reactants), and consequently, their contributions to overall catalytic reactivity, remains challenging, as the nanoparticle and support characteristics are interdependent when catalysts are prepared by impregnation. Here, we decoupled both characteristics by using a raspberry-colloid-templating strategy that yields partially embedded PdAu nanoparticles within well-defined SiO2or TiO2supports, thereby increasing the metal–support interfacial contact compared to nonembedded catalysts that we prepared by attaching the same nanoparticles onto support surfaces. Between nonembedded PdAu/SiO2and PdAu/TiO2, we identified a support effect resulting in a 1.4-fold higher activity of PdAu/TiO2than PdAu/SiO2for benzaldehyde hydrogenation. Notably, partial nanoparticle embedding in the TiO2raspberry-colloid-templated support increased the metal–support interfacial perimeter and consequently, the number of Au/TiO2interfacial sites by 5.4-fold, which further enhanced the activity of PdAu/TiO2by an additional 4.1-fold. Theoretical calculations and in situ surface-sensitive desorption analyses reveal facile benzaldehyde binding at the Au/TiO2interface and at Pd ensembles on the nanoparticle surface, explaining the connection between the number of Au/TiO2interfacial sites (via the metal–support interfacial perimeter) and catalytic activity. Our results demonstrate partial nanoparticle embedding as a synthetic strategy to produce thermocatalytically stable catalysts and increase the number of catalytically active Au/TiO2interfacial sites to augment catalytic contributions arising from metal–support interfaces. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154952
- PAR ID:
- 10586844
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 2
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Nanoparticle catalysts display optimal mass activity due to their high surface to volume ratio and tunable size and structure. However, control of nanoparticle size requires the presence of surface ligands, which significantly influence catalytic performance. In this work, we investigate the effect of dodecanethiol on the activity, selectivity, and stability of Au nanoparticles for electrochemical carbon dioxide reduction (CO 2 R). Results show that dodecanethiol on Au nanoparticles significantly enhances selectivity and stability with minimal loss in activity by acting as a CO 2 -permeable membrane, which blocks the deposition of metal ions that are otherwise responsible for rapid deactivation. Although dodecanethiol occupies 90% or more of the electrochemical active surface area, it has a negligible effect on the partial current density to CO, indicating that it specifically does not block the active sites responsible for CO 2 R. Further, by preventing trace ion deposition, dodecanethiol stabilizes CO production on Au nanoparticles under conditions where CO 2 R selectivity on polycrystalline Au rapidly decays to zero. Comparison with other surface ligands and nanoparticles shows that this effect is specific to both the chemical identity and the surface structure of the dodecanethiol monolayer. To demonstrate the potential of this catalyst, CO 2 R was performed in electrolyte prepared from ambient river water, and dodecanethiol-capped Au nanoparticles produce more than 100 times higher CO yield compared to clean polycrystalline Au at identical potential and similar current.more » « less
- 
            Abstract Multi‐elemental alloy (MEA) nanoparticles have recently received notable attention owing to their high activity and superior phase stability. Previous syntheses of MEA nanoparticles mainly used carbon as the support, owing to its high surface area, good electrical conductivity, and tunable defective sites. However, the interfacial stability issue, such as nanoparticle agglomeration, remains outstanding due to poor interfacial binding between MEA and carbon. Such a problem often causes performance decay when MEA nanoparticles are used as catalysts, hindering their practical applications. Herein, an interface engineering strategy is developed to synthesize MEA–oxide–carbon hierarchical catalysts, where the oxide on carbon helps disperse and stabilize the MEA nanoparticles toward superior thermal and electrochemical stability. Using several MEA compositions (PdRuRh, PtPdIrRuRh, and PdRuRhFeCoNi) and oxides (TiO2and Cr2O3) as model systems, it is shown that adding the oxide renders superior interfacial stability and therefore excellent catalytic performance. Excellent thermal stability is demonstrated under transmission electron microscopy with in situ heating up to 1023 K, as well as via long‐term cycling (>370 hours) of a Li–O2battery as a harsh electrochemical condition to challenge the catalyst stability. This work offers a new route toward constructing efficient and stable catalysts for various applications.more » « less
- 
            Heterogeneously catalyzed deoxydehydration (DODH) ordinarily occurs over relatively costly oxide supported ReO x sites and is an effective process for the removal of vicinal OH groups that are common in biomass-derived chemicals. Here, through first-principles calculations, we investigate the DODH of 1,4-anhydroerythritol over anatase TiO 2 (101)-supported ReO x and MoO x . The atomistic structures of ReO x and MoO x under typical reaction conditions were identified with constrained thermodynamics calculations as ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 , respectively. The calculated energy profile and developed microkinetic reaction model suggest that both ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 exhibit a relatively low DODH activity at 413 K. However, at higher temperatures such as 473 K, MoO(2O)/TiO 2 (101) was found to exhibit a reasonably high catalytic activity similar to ReO 2 (2O)/6H–TiO 2 , consistent with a recent experimental study. Mechanistically, the first O–H bond cleavage of 1,4-anhydroerythritol and the dihydrofuran extrusion were found to be the rate-controlling steps for the reaction over ReO 2 (2O)/6H–TiO 2 and MoO(2O)/3H–TiO 2 , respectively. Thus, this study clarifies the mechanism of the DODH over oxide-supported catalysts and provides meaningful insight into the design of low-cost DODH catalysts.more » « less
- 
            null (Ed.)Silica-encapsulated gold core@shell nanoparticles (Au@SiO 2 CSNPs) were synthesized via a tunable bottom-up procedure to catalyze the aerobic oxidation of benzyl alcohol. The nanoparticles exhibit a mesoporous shell which enhances selectivity by inhibiting the formation of larger species. Adding potassium carbonate to the reaction increased conversion from 17.3 to 60.4% while decreasing selectivity from 98.4 to 75.0%. A gold nanoparticle control catalyst with a similar gold surface area took 6 times as long to reach the same conversion, achieving only 49.4% selectivity. These results suggest that the pore size distribution within the inert silica shell of Au@SiO 2 CSNPs inhibits the formation of undesired products to facilitate the selective oxidation of benzaldehyde despite a basic environment. A smaller activation energy, mass transport analysis, and mesopore distribution together suggest the Au@SiO 2 CSNP catalyst demonstrates higher activity through beneficial in-pore orientation, promoting a lower activation energy mechanistic pathway. Taken together, this is a promising catalytic structure to optimize oxidation chemistries, without leveraging surface-interacting factors like chelating agents or active support surfaces.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
