The evolution of eusociality in Hymenoptera—encompassing bees, ants, and wasps—is characterized by multiple gains and losses of social living, making this group a prime model to understand the mechanisms that underlie social behavior and social complexity. Our review synthesizes insights into the evolutionary history and molecular basis of eusociality. We examine new evidence for key evolutionary hypotheses and molecular pathways that regulate social behaviors, highlighting convergent evolution on a shared molecular toolkit that includes the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) pathways, juvenile hormone and ecdysteroid signaling, and epigenetic regulation. We emphasize how the crosstalk among these nutrient-sensing and endocrine signaling pathways enables social insects to integrate external environmental stimuli, including social cues, with internal physiology and behavior. We argue that examining these pathways as an integrated regulatory circuit and exploring how the regulatory architecture of this circuit evolves alongside eusociality can open the door to understanding the origin of the complex life histories and behaviors of this group.
more »
« less
The diverse roles of insulin signaling in insect behavior
In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information fromDrosophila melanogasterand other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.
more »
« less
- Award ID(s):
- 2045901
- PAR ID:
- 10587025
- Publisher / Repository:
- Frontiers in Insect Science
- Date Published:
- Journal Name:
- Frontiers in Insect Science
- Volume:
- 4
- ISSN:
- 2673-8600
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The insulin and insulin-like signalling (IIS) network plays an important role in mediating several life-history traits, including growth, reproduction and senescence. Although insulin-like growth factors (IGFs) 1 and 2 are both key hormones in the vertebrate IIS network, research on IGF2 in juveniles and adults has been largely neglected because early biomedical research on rodents found negligible IGF2 postnatal expression. Here, we challenge this assumption and ask to what degree IGF2 is expressed during postnatal life across amniotes by quantifying the relative gene expression of IGF1 and IGF2 using publicly available RNAseq data for 82 amniote species and quantitative polymerase chain reaction on liver cDNA at embryonic, juvenile and adult stages for two lizard, bird and mouse species. We found that (i) IGF2 is expressed postnatally across amniote species and life stages—often at a higher relative expression than IGF1 , contradicting rodent models; (ii) the lack of rodent postnatal IGF2 expression is due to phylogenetic placement, not inbreeding or artificial selection; and (iii) adult IGF2 expression is sex-biased in some species. Our results demonstrate that IGF2 expression is typical for amniotes throughout life, suggesting that a comprehensive understanding of the mechanisms mediating variation in life-history traits will require studies that measure both IGFs.more » « less
-
Intestine-to-neuronal signaling alters risk-taking behaviors in food-deprived Caenorhabditis elegansAshrafi, Kaveh (Ed.)Animals integrate changes in external and internal environments to generate behavior. While neural circuits detecting external cues have been mapped, less is known about how internal states like hunger are integrated into behavioral outputs. Here, we use the nematode C . elegans to examine how changes in internal nutritional status affect chemosensory behaviors. We show that acute food deprivation leads to a reversible decline in repellent, but not attractant, sensitivity. This behavioral change requires two conserved transcription factors MML-1 (MondoA) and HLH-30 (TFEB), both of which translocate from the intestinal nuclei to the cytoplasm during food deprivation. Next, we identify the insulin-like peptide INS-31 as a candidate ligand relaying food-status signals from the intestine to other tissues. Further, we show that neurons likely use the DAF-2 insulin receptor and AGE-1/PI-3 Kinase, but not DAF-16/FOXO to integrate these intestine-released peptides. Altogether, our study shows how internal food status signals are integrated by transcription factors and intestine-neuron signaling to generate flexible behaviors via the gut-brain axis.more » « less
-
Gene model for the ortholog of Regulator of cullins 1a (Roc1a) in the May 2011 (Broad dper_caf1/DperCAF1) Genome Assembly (GenBank Accession: GCA_000005195.1 ) of Drosophila persimilis. This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.more » « less
-
Gene model for the ortholog of Phosphoinositide-dependent kinase 1 (Pdk1) in the May 2011 (Agencourt dgri_caf1/DgriCAF1) Genome Assembly (GenBank Accession: GCA_000005155.1 ) of Drosophila grimshawi. This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.more » « less
An official website of the United States government

