skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of 1,3-benzotellurazole derivatives from phenyl ureas and tellurium tetrachloride
A method has been developed to prepare previously inaccessible substituted 1,3-benzotellurazoles following an efficient two-step process, consisting of the tellurination of electron rich phenyl ureas with tellurium tetrachloride and subsequent ring closure of the resulting aryl tellurium trichlorides. Tellurination occurs regiospecifically ortho to the urea moiety due to intramolecular Te–O coordination, producing highly crystalline solids that are readily isolated in yields up to 83%. Subsequent ring closure, accomplished by heating with phosphorus trichloride and subsequent reduction with hydrazine hydrate, provides access to 1,3-benzotellurazole derivatives. Selected products were characterized by X-ray crystallography.  more » « less
Award ID(s):
2404400
PAR ID:
10587061
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier/Journal of Organometallic Chemistry
Date Published:
Journal Name:
Journal of organometallic chemistry
Volume:
1020
Issue:
C
ISSN:
0022-328X
Page Range / eLocation ID:
123342
Subject(s) / Keyword(s):
Tellurium Tellurazole Tellurination 1,3-Benzotellurazole Heterocycle
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report the one-step synthesis of diversely substituted functional 1,2-dithiolanes by reacting readily accessible 1,3-bis- tert -butyl thioethers with bromine. The reaction proceeds to completion within minutes under mild conditions, presumably via a sulfonium-mediated ring closure. Using X-ray crystallography and UV-vis spectroscopy, we demonstrate how substituent size and ring substitution pattern can affect the geometry and photophysical properties of 1,2-dithiolanes. 
    more » « less
  2. Unimolecular decay of the formaldehyde oxide (CH2OO) Criegee intermediate proceeds via a 1,3 ring-closure pathway to dioxirane and subsequent rearrangement and/or dissociation to many products including hydroxyl (OH) radicals that are detected. Vibrational activation of jet-cooled CH2OO with two quanta of CH stretch (17-18 kcal mol-1) leads to unimolecular decay at an energy significantly below the transition state barrier of 19.46  0.25 kcal mol-1, refined utilizing a high-level electronic structure method HEAT-345(Q)Λ. The observed unimolecular decay rate of 1.6 +/- 0.4 x 106 s-1 is two orders of magnitude slower than that predicted by statistical unimolecular reaction theory using several different models for quantum mechanical tunneling. The nonstatistical behavior originates from excitation of a CH stretch vibration that is orthogonal to the heavy atom motions along the reaction coordinate and slow intramolecular vibrational energy redistribution due to the sparse density of states. 
    more » « less
  3. Abstract Despite the unique reactivity of vitamin B12and its derivatives, B12‐dependent enzymes remain underutilized in biocatalysis. In this study, we repurposed the B12‐dependent transcription factor CarH to enable non‐native radical cyclization reactions. An engineered variant of this enzyme, CarH*, catalyzes the formation γ‐ and δ‐lactams through either redox‐neutral or reductive ring closure with marked enhancement of reactivity and selectivity relative to the free B12cofactor. CarH* also catalyzes an unusual spirocyclization by dearomatization of pendant arenes to produce bicyclic 1,3‐diene products instead of 1,4‐dienes provided by existing methods. These results and associated mechanistic studies highlight the importance of protein scaffolds for controlling the reactivity of B12and expanding the synthetic utility of B12‐dependent enzymes. 
    more » « less
  4. Abstract The separation of tellurium from cadmium telluride is examined using a unique combination of mild, anhydrous chlorination and complexation of the subsequent tellurium tetrachloride with 3,5‐di‐tert‐butylcatecholate ligands (dtbc). The resulting tellurium complex, Te(dtbc)2, is isolated in moderate yield and features a 103to 104reduction in cadmium content, as provided by XRF and ICP‐MS analysis. Similar results were obtained from zinc telluride. A significant separation between Te, Se, and S was observed after treating a complex mixture of metal chalcogenides with this protocol. These three tunable steps can be applied for future applications of CdTe photovoltaic waste. 
    more » « less
  5. Concise total syntheses of several 5/7/6 norcembranoids, including ineleganolide, scabrolide B, sinuscalide C, and fragilolide A have been achieved through a fragment coupling/ring closure approach. The central seven-membered ring was forged through sequential Mukaiyama–Michael/aldol reactions using norcarvone and a decorated bicyclic lactone incorporating a latent electrophile. Subsequent manipulations installed the reactive enedione motif and delivered scabrolide B in 11 steps from a chiral pool-derived enone. Finally, ineleganolide, sinuscalide C, and fragilolide A were each accessed in one additional step. 
    more » « less