We present a consensus-based framework that unifies phase space exploration with posterior-residual-based adaptive sampling for surrogate construction in high-dimensional energy landscapes. Unlike standard approximation tasks where sampling points can be freely queried, systems with complex energy landscapes such as molecular dynamics (MD) do not have direct access to arbitrary sampling regions due to the physical constraints and energy barriers; the surrogate construction further relies on the dynamical exploration of phase space, posing a significant numerical challenge. We formulate the problem as a minimax optimization that jointly adapts both the surrogate approximation and residual-enhanced sampling. The construction of free energy surfaces (FESs) for high-dimensional collective variables (CVs) of MD systems is used as a motivating example to illustrate the essential idea. Specifically, the maximization step establishes a stochastic interacting particle system to impose adaptive sampling through both exploitation of a Laplace approximation of the max-residual region and exploration of uncharted phase space via temperature control. The minimization step updates the FES surrogate with the new sample set. Numerical results demonstrate the effectiveness of the present approach for biomolecular systems with up to 30 CVs. While we focus on the FES construction, the developed framework is general for efficient surrogate construction for complex systems with high-dimensional energy landscapes. 
                        more » 
                        « less   
                    This content will become publicly available on April 22, 2026
                            
                            Ensemble Adaptive Sampling Scheme: Identifying an Optimal Sampling Strategy via Policy Ranking
                        
                    
    
            Efficient sampling in biomolecular simulations is critical for accurately capturing the complex dynamic behaviors of biological systems. Adaptive sampling techniques aim to improve efficiency by focusing computational resources on the most relevant regions of the phase space. In this work, we present a framework for identifying the optimal sampling policy through metric-driven ranking. Our approach systematically evaluates the policy ensemble and ranks the policies based on their ability to explore the conformational space effectively. Through a series of biomolecular simulation case studies, we demonstrate that the choice of a different adaptive sampling policy at each round significantly outperforms single policy sampling, leading to faster convergence and improved sampling performance. This approach takes an ensemble of adaptive sampling policies and identifies the optimal policy for the next round based on current data. Beyond presenting this ensemble view of adaptive sampling, we also propose two sampling algorithms that approximate this ranking framework on the fly. The modularity of this framework allows incorporation of any adaptive sampling policy, making it versatile and suitable as a comprehensive adaptive sampling scheme. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1845606
- PAR ID:
- 10587138
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of Chemical Theory and Computation
- ISSN:
- 1549-9618
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In practice, it is essential to compare and rank candidate policies offline before real-world deployment for safety and reliability. Prior work seeks to solve this offline policy ranking (OPR) problem through value-based methods, such as Off-policy evaluation (OPE). However, they fail to analyze special case performance (e.g., worst or best cases), due to the lack of holistic characterization of policies’ performance. It is even more difficult to estimate precise policy values when the reward is not fully accessible under sparse settings. In this paper, we present Probabilistic Offline Policy Ranking (POPR), a framework to address OPR problems by leveraging expert data to characterize the probability of a candidate policy behaving like experts, and approximating its entire performance posterior distribution to help with ranking. POPR does not rely on value estimation, and the derived performance posterior can be used to distinguish candidates in worst-, best-, and average-cases. To estimate the posterior, we propose POPR-EABC, an Energy-based Approximate Bayesian Computation (ABC) method conducting likelihood-free inference. POPR-EABC reduces the heuristic nature of ABC by a smooth energy function, and improves the sampling efficiency by a pseudo-likelihood. We empirically demonstrate that POPR-EABC is adequate for evaluating policies in both discrete and continuous action spaces across various experiment environments, and facilitates probabilistic comparisons of candidate policies before deployment.more » « less
- 
            This paper studies the “age of information” (AoI) in a multi-source status update system where N active sources each send updates of their time-varying process to a monitor through a server with packet delivery errors. We analyze the average AoI for stationary randomized and round-robin scheduling policies. For both of these scheduling policies, we further analyze the effect of packet retransmission policies, i.e., retransmission without re- sampling, retransmission with resampling, or no retransmission, when errors occur. Expressions for the average AoI are derived for each case. It is shown that the round-robin schedule policy in conjunction with retransmission with resampling when errors occur achieves the lowest average AoI among the considered cases. For stationary randomized schedules with equiprobable source selection, it is further shown that the average AoI gap to round-robin schedules with the same packet management policy scales as O(N). Finally, for stationary randomized policies, the optimal source selection probabilities that minimize a weighted sum average AoI metric are derived.more » « less
- 
            Conventional Learning-to-Rank (LTR) methods optimize the utility of the rankings to the users, but they are oblivious to their impact on the ranked items. However, there has been a growing understanding that the latter is important to consider for a wide range of ranking applications (e.g. online marketplaces, job placement, admissions). To address this need, we propose a general LTR framework that can optimize a wide range of utility metrics (e.g. NDCG) while satisfying fairness of exposure constraints with respect to the items. This framework expands the class of learnable ranking functions to stochastic ranking policies, which provides a language for rigorously expressing fairness specifications. Furthermore, we provide a new LTR algorithm called FAIR-PG-RANK for directly searching the space of fair ranking policies via a policy-gradient approach. Beyond the theoretical evidence in deriving the framework and the algorithm, we provide empirical results on simulated and real-world datasets verifying the effectiveness of the approach in individual and group-fairness settings.more » « less
- 
            In this paper, we study a sampling problem where a source takes samples from a Wiener process and transmits them through a wireless channel to a remote estimator. Due to channel fading, interference, and potential collisions, the packet transmissions are unreliable and could take random time durations. Our objective is to devise an optimal causal sampling policy that minimizes the long-term average mean square estimation error. This optimal sampling problem is a recursive optimal stopping problem, which is generally quite difficult to solve. However, we prove that the optimal sampling strategy is, in fact, a simple threshold policy where a new sample is taken whenever the instantaneous estimation error exceeds a threshold. This threshold remains a constant value that does not vary over time. By exploring the structure properties of the recursive optimal stopping problem, a low-complexity iterative algorithm is developed to compute the optimal threshold. This work generalizes previous research by incorporating both transmission errors and random transmission times into remote estimation. Numerical simulations are provided to compare our optimal policy with the zero-wait and age-optimal policies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
