Abstract Copper nanoparticles (CuNPs) embedded in polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) fiber‐matrices were prepared through centrifugal spinning of PVP/ethanol and PEO/aqueous solutions, respectively. The prime focus of the current study is to investigate the antibacterial activity of composite fibers againstEscherichia coli(E. coli) andBacillus cereus(B. cereus) bacteria. During the fiber formation, the centrifugal spinning parameters such as spinneret rotational speed, spinneret to collector distance, and relative humidity were carefully chosen to obtain long and continuous fibers. The structural and morphological analyses of both composite fibers were investigated using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, and thermogravimetric analysis. In the antibacterial test, PVP/Cu and PEO/Cu composite fibrous membranes exhibited inhibition efficiency of 99.98% and 99.99% againstE. coliandB. cereusbacteria, respectively. Basically, CuNPs were well embedded in the fibrous membrane at the nanoscale level, which facilitated the inhibition of bacterial functions through the inactivation of the chemical structure of the cells. Such an effective antibacterial agent obtained from forcespun composite fibers could be promising candidates for biomedical applications.
more »
« less
Copper-Based Antibiotic Strategies: Exploring Applications in the Hospital Setting and the Targeting of Cu Regulatory Pathways and Current Drug Design Trends
Classical antibacterial drugs were designed to target specific bacterial properties distinct from host human cells to maximize potency and selectivity. These designs were quite effective as they could be easily derivatized to bear next-generation drugs. However, the rapid mutation of bacteria and their associated acquired drug resistance have led to the rise of highly pathogenic superbug bacterial strains for which treatment with first line drugs is no match. More than ever, there is a dire need for antibacterial drug design that goes beyond conventional standards. Taking inspiration by the body’s innate immune response to employ its own supply of labile copper ions in a toxic attack against pathogenic bacteria, which have a very low Cu tolerance, this review article examines the feasibility of Cu-centric strategies for antibacterial preventative and therapeutic applications. Promising results are shown for the use of Cu-containing materials in the hospital setting to minimize patient bacterial infections. Studies directed at disrupting bacterial Cu regulatory pathways elucidate new drug targets that can enable toxic increase of Cu levels and perturb bacterial dependence on iron. Likewise, Cu intracellular chelation/prochelation strategies effectively induce bacterial Cu toxicity. Cu-based small molecules and nanoparticles demonstrate the importance of the Cu ions in their mechanism and display potential synergism with classical drugs.
more »
« less
- Award ID(s):
- 1231306
- PAR ID:
- 10587153
- Publisher / Repository:
- Inorganics
- Date Published:
- Journal Name:
- Inorganics
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2304-6740
- Page Range / eLocation ID:
- 252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications.more » « less
-
Understanding the structural and mechanistic details of protein-DNA interactions that lead to cellular defence against toxic metal ions in pathogenic bacteria can lead to new ways of combating their virulence. Herein, we examine the Copper Efflux Regulator (CueR) protein, a transcription factor which interacts with DNA to generate proteins that ameliorate excess free Cu( i ). We exploit site directed Cu( ii ) labeling to measure the conformational changes in DNA as a function of protein and Cu( i ) concentration. Unexpectedly, the EPR data indicate that the protein can bend the DNA at high protein concentrations even in the Cu( i )-free state. On the other hand, the bent state of the DNA is accessed at a low protein concentration in the presence of Cu( i ). Such bending enables the coordination of the DNA with RNA polymerase. Taken together, the results lead to a structural understanding of how transcription is activated in response to Cu( i ) stress and how Cu( i )-free CueR can replace Cu( i )-bound CueR in the protein-DNA complex to terminate transcription. This work also highlights the utility of EPR to measure structural data under conditions that are difficult to access in order to shed light on protein function.more » « less
-
Abstract Gut microbiomes provide numerous physiological benefits for host animals. The role of bacterial members of microbiomes in host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members of the microbiome even though fungi are significant components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wingDrosophilaspecies,D. grimshawi, and identified distinct, sex-specific roles for the bacteria and fungi in microbiome community stability and reproduction. Female oogenesis, fecundity and mating drive were significantly diminished when fungal communities were suppressed. By contrast, male fecundity was more strongly affected by bacterial but not fungal populations. For males and females, suppression of both bacteria and fungi severely reduced fecundity and altered fatty acid levels and composition, implicating the importance of interkingdom interactions on reproduction and lipid metabolism. Overall, our results reveal that bacteria and fungi have distinct, sexually-dimorphic effects on host physiology and interkingdom dynamics in the gut help to maintain microbiome community stability and enhance reproduction.more » « less
-
Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.more » « less
An official website of the United States government

