Abstract The glycerophosphodiester phosphodiesterase (GDPD)‐like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (β/α)8barrel fold of GDPD, while gaining a signature C‐terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C‐terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands β7–β8 of a β‐sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α‐helix, a β‐strand, and an ordered loop. The GDPD‐PLAT fusion led to two acquisitions in founding the GDPD‐like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.
more »
« less
Structural and biophysical properties of FopA, a major outer membrane protein of Francisella tularensis
Francisella tularensisis an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable.F.tularensisouter membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) ofF.tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a β-barrel domain consistent with alphafold2’s prediction of an eight stranded β-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal β-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal β-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it.
more »
« less
- Award ID(s):
- 1231306
- PAR ID:
- 10587180
- Editor(s):
- Gasset, Maria
- Publisher / Repository:
- PLOS ONE
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 8
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0267370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The SARS-CoV-2 nucleocapsid (N) protein performs several functions including binding, compacting, and packaging the ∼30 kb viral genome into the viral particle. N protein consists of two ordered domains, with the N terminal domain (NTD) primarily associated with RNA binding and the C terminal domain (CTD) primarily associated with dimerization/oligomerization, and three intrinsically disordered regions, an N-arm, a C-tail, and a linker that connects the NTD and CTD. We utilize an optical tweezers system to isolate a long single-stranded nucleic acid substrate to measure directly the binding and packaging function of N protein at a single molecule level in real time. We find that N protein binds the nucleic acid substrate with high affinity before oligomerizing and forming a highly compact structure. By comparing the activities of truncated protein variants missing the NTD, CTD, and/or linker, we attribute specific steps in this process to the structural domains of N protein, with the NTD driving initial binding to the substrate and ensuring high localized protein density that triggers interprotein interactions mediated by the CTD, which forms a compact and stable protein-nucleic acid complex suitable for packaging into the virion.more » « less
-
Type 11 secretion systems (T11SS) are broadly distributed among proteobacteria, with more than 3000 T11SS family outer membrane proteins (OMPs) comprising 10 major sequence similarity network (SSN) clusters. Of these, only 7, all from animal-associated cluster 1, have been experimentally verified as secretins of cargo, including adhesins, hemophores, and metal binding proteins. To identify novel cargo of a more diverse set of T11SS, we identified gene families co-occurring in gene neighborhoods with either cluster 1 or marine microbe-associated cluster 3 T11SS OMP genes. We developed bioinformatic controls to ensure perceived co-occurrences are specific to T11SS, and not general to OMPs. We found that both cluster 1 and cluster 3 T11SS OMPs frequently co-occur with single carbon metabolism and nucleotide synthesis pathways, but that only cluster 1 T11SS OMPs had significant co-occurrence with metal and heme pathways, as well as with mobile genetic islands, potentially indicating diversified function of this cluster. Cluster 1 T11SS co-occurrences included 2556 predicted cargo proteins, unified by the presence of a C-terminal β-barrel domain, which fall into 141 predicted UniRef50 clusters and approximately 10 different architectures: 4 similar to known cargo and 6 uncharacterized types. We experimentally demonstrate T11SS-dependent secretion of an uncharacterized cargo type with homology to Plasmin sensitive protein (Pls). Unexpectedly, genes encoding marine cluster 3 T11SS OMPs only rarely co-occurred with the C-terminal β-barrel domain and instead frequently co-occurred with DUF1194-containing genes. Overall, our results show that with sufficiently large-scale and controlled genomic data, T11SS-dependent cargo proteins can be accurately predicted.more » « less
-
Klymkowsky, Michael (Ed.)Canonical Wnt/β-catenin (cWnt) signaling is a crucial regulator of development and Dishevelled (Dsh/Dvl) functions as an integral part of this pathway by linking Wnt binding to the Frizzled:LRP5/6 receptor complex with β-catenin-stimulated gene expression. In many cell types Dsh has been localized to ill-defined cytoplasmic puncta, however in sea urchin eggs and embryos confocal fluorescence microscopy has shown that Dsh is localized to puncta present in a novel and development-essential vegetal cortex domain (VCD). In the present study, we used super-resolution light microscopy and platinum replica transmission electron microscopy (TEM) to provide the first views of the ultrastructural organization of Dsh within the sea urchin VCD. 3D structured illumination microscopy (SIM) imaging of isolated egg cortices demonstrated the graded distribution of Dsh in the VCD, whereas higher resolution stimulated emission depletion (STED) imaging revealed that some individual Dsh puncta consisted of more than one fluorescent source. Platinum replica immuno-TEM localization showed that Dsh puncta on the cytoplasmic face of the plasma membrane consisted of aggregates of pedestal-like structures each individually labeled with the C-terminus specific Dsh antibody. These aggregates were resistant to detergent extraction and treatment with drugs that disrupt actin filaments or inhibit myosin II contraction, and coexisted with the first cleavage actomyosin contractile ring. These results confirm and extend previous studies and reveal, for the first time in any cell type, the nanoscale organization of plasma membrane tethered Dsh. Our current working hypothesis is that these Dsh pedestals represent a prepositioned scaffold organization that is important for the localized activation of the cWnt pathway at the sea urchin vegetal pole. These observations in sea urchins may also be relevant to the submembranous Dsh puncta present in other eggs and embryos.more » « less
-
TMEM120A, also named as TACAN, is a novel membrane protein highly conserved in vertebrates and was recently proposed to be a mechanosensitive channel involved in sensing mechanical pain. Here we present the single-particle cryogenic electron microscopy (cryo-EM) structure of human TMEM120A, which forms a tightly packed dimer with extensive interactions mediated by the N-terminal coiled coil domain (CCD), the C-terminal transmembrane domain (TMD), and the re-entrant loop between the two domains. The TMD of each TMEM120A subunit contains six transmembrane helices (TMs) and has no clear structural feature of a channel protein. Instead, the six TMs form an α-barrel with a deep pocket where a coenzyme A (CoA) molecule is bound. Intriguingly, some structural features of TMEM120A resemble those of elongase for very long-chain fatty acids (ELOVL) despite the low sequence homology between them, pointing to the possibility that TMEM120A may function as an enzyme for fatty acid metabolism, rather than a mechanosensitive channel.more » « less
An official website of the United States government

