Leaves are the primary harvest portion in forage crops such as alfalfa (Medicago sativa). Delaying leaf senescence is an effective strategy to improve forage biomass production and quality. In this study, we employed transcriptome sequencing to analyze the transcriptional changes and identify key senescence-associated genes under age-dependent leaf senescence in Medicago truncatula, a legume forage model plant. Through comparing the obtained expression data at different time points, we obtained 1057 differentially expressed genes, with 108 consistently up-regulated genes across leaf growth and senescence. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the 108 SAGs mainly related to protein processing, nitrogen metabolism, amino acid metabolism, RNA degradation and plant hormone signal transduction. Among the 108 SAGs, seven transcription factors were identified in which a novel bZIP transcription factor MtbZIP60 was proved to inhibit leaf senescence. MtbZIP60 encodes a nuclear-localized protein and possesses transactivation activity. Further study demonstrated MtbZIP60 could associate with MtWRKY40, both of which exhibited an up-regulated expression pattern during leaf senescence, indicating their crucial roles in the regulation of leaf senescence. Our findings help elucidate the molecular mechanisms of leaf senescence in M. truncatula and provide candidates for the genetic improvement of forage crops, with a focus on regulating leaf senescence. 
                        more » 
                        « less   
                    
                            
                            Transcriptome-Wide Identification of Dark- and Salt-Induced Senescence-Related NAC Gene Family Members in Alfalfa
                        
                    
    
            Leaves are a key forage part for livestock, and the aging of leaves affects forage biomass and quality. Preventing or delaying premature leaf senescence leads to an increase in pasture biomass accumulation and an improvement in alfalfa quality. NAC transcription factors have been reported to affect plant growth and abiotic stress responses. In this study, 48 NAC genes potentially associated with leaf senescence were identified in alfalfa under dark or salt stress conditions. A phylogenetic analysis divided MsNACs into six subgroups based on similar gene structure and conserved motif. These MsNACs were unevenly distributed in 26 alfalfa chromosomes. The results of the collinearity analysis show that all of the MsNACs were involved in gene duplication. Some cis-acting elements related to hormones and stress were screened in the 2-kb promoter regions of MsNACs. Nine of the MsNAC genes were subjected to qRT-PCR to quantify their expression and Agrobacterium-mediated transient expression to verify their functions. The results indicate that Ms.gene031485, Ms.gene032313, Ms.gene08494, and Ms.gene77666 might be key NAC genes involved in alfalfa leaf senescence. Our findings extend the understanding of the regulatory function of MsNACs in leaf senescence. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2233714
- PAR ID:
- 10587263
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 25
- Issue:
- 16
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 8908
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Leaves are the most significant parts of forage crops such as alfalfa. Senescence is the terminal stage of leaf development and is controlled by an integrated myriad of endogenous signals and environmental stimuli. WRKY transcription factors (TFs) play essential roles in regulating leaf senescence; however, only a few studies on the analysis and identification of the WRKY TF family in Medicago Sativa have been reported. In this study, we identified 198 WRKY family members from the alfalfa (M. sativa L.) cultivar ’XinjiangDaye’ using phylogenetic analysis and categorized them into three subfamilies, Groups I, II, and III, based on their structural characteristics. Group II members were further divided into five subclasses. In addition, several hormone- and stress-related cis-acting elements were identified in the promoter regions of MsWRKYs. Furthermore, 14 aging-related MsWRKYs genes from a previous transcriptome in our laboratory were selected for RT-qPCR validation of their expression patterns, and subsequently cloned for overexpression examination. Finally, MsWRKY5, MsWRKY66, MsWRKY92, and MsWRKY141 were confirmed to cause leaf yellowing in Nicotiana benthaminana using a transient expression system. Our findings lay a groundwork for further studies on the mechanism of M. sativa leaf aging and for the creation of new germplasm resources.more » « less
- 
            Alfalfa (Medicago sativaL.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting theCOUMARATE 3-HYDROXYLASE (MsC3H)gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon ofMsC3Hwere designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa viaAgrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles ofMsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, andMsc3h-158) with different mutation events inMsC3Hwere characterized in detail. Homozygous mutation ofMsC3Hin these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, andin vitrotrue dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing ofMsC3Hsuccessfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality.more » « less
- 
            Summary Alfalfa (Medicago sativaL.) is a perennial flowering plant in the legume family that is widely cultivated as a forage crop for its high yield, forage quality and related agricultural and economic benefits. Alfalfa is a photoperiod sensitive long‐day (LD) plant that can accomplish its vegetative and reproductive phases in a short period of time. However, rapid flowering can compromise forage biomass yield and quality. Here, we attempted to delay flowering in alfalfa using multiplex CRISPR/Cas9‐mediated mutagenesis ofFLOWERING LOCUS Ta1(MsFTa1), a key floral integrator and activator gene. Four guide RNAs (gRNAs) were designed and clustered in a polycistronic tRNA–gRNA system and introduced into alfalfa byAgrobacterium‐mediated transformation. Ninety‐six putative mutant lines were identified by gene sequencing and characterized for delayed flowering time and related desirable agronomic traits. Phenotype assessment of flowering time under LD conditions identified 22 independent mutant lines with delayed flowering compared to the control. Six independentMsfta1lines containing mutations in all four copies ofMsFTa1accumulated significantly higher forage biomass yield, with increases of up to 78% in fresh weight and 76% in dry weight compared to controls. Depending on the harvesting schemes, many of these lines also had reduced lignin, acid detergent fibre (ADF) and neutral detergent fibre (NDF) content and significantly higher crude protein (CP) and mineral contents compared to control plants, especially in the stems. These CRISPR/Cas9‐editedMsfta1mutants could be introduced in alfalfa breeding programmes to generate elite transgene‐free alfalfa cultivars with improved forage biomass yield and quality.more » « less
- 
            null (Ed.)Abstract Age-dependent changes in reactive oxygen species (ROS) levels are critical in leaf senescence. While H2O2-reducing enzymes such as catalases and cytosolic ASCORBATE PEROXIDASE1 (APX1) tightly control the oxidative load during senescence, their regulation and function are not specific to senescence. Previously, we identified the role of ASCORBATE PEROXIDASE6 (APX6) during seed maturation in Arabidopsis (Arabidopsis thaliana). Here, we show that APX6 is a bona fide senescence-associated gene. APX6 expression is specifically induced in aging leaves and in response to senescence-promoting stimuli such as abscisic acid (ABA), extended darkness, and osmotic stress. apx6 mutants showed early developmental senescence and increased sensitivity to dark stress. Reduced APX activity, increased H2O2 level, and altered redox state of the ascorbate pool in mature pre-senescing green leaves of the apx6 mutants correlated with the early onset of senescence. Using transient expression assays in Nicotiana benthamiana leaves, we unraveled the age-dependent post-transcriptional regulation of APX6. We then identified the coding sequence of APX6 as a potential target of miR398, which is a key regulator of copper redistribution. Furthermore, we showed that mutants of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), the master regulator of copper homeostasis and miR398 expression, have a higher APX6 level compared with the wild type, which further increased under copper deficiency. Our study suggests that APX6 is a modulator of ROS/redox homeostasis and signaling in aging leaves that plays an important role in developmental- and stress-induced senescence programs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    