skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SAXS structure of homodimeric oxyHemoglobin III from bivalve Lucina pectinata
Abstract Hemoglobin III (HbIII) is one of the two oxygen reactive hemoproteins present in the bivalve,Lucina pectinata. The clam inhabits a sulfur‐rich environment and HbIII is the only hemoprotein present in the system which does not yet have a structure described elsewhere. It is known that HbIII exists as a heterodimer with hemoglobin II (HbII) to generate the stable Oxy(HbII‐HbIII) complex but it remains unknown if HbIII can form a homodimeric species. Here, a new chromatographic methodology to separate OxyHbIII from the HbII‐HbIII dimer has been developed, employing a fast performance liquid chromatography and ionic exchange chromatography column. The nature of OxyHbIII in solution at concentrations from 1.6 mg/mL to 20.4 mg/mL was studied using small angle X‐ray scattering (SAXS). The results show that at all concentrations, the Oxy(HbIII‐HbIII) dimer dominates in solution. However, as the concentration increases to nonphysiological values, 20.4 mg/mL, HbIII forms a 30% tetrameric fraction. Thus, there is a direct relationship between the Oxy(HbIII‐HbIII) oligomeric form and hemoglobin concentration. We suggest it is likely that the OxyHbIII dimer contributes to active oxygen transport in tissues ofL pectinata, where the Oxy(HbII‐HbIII) complex is not present.  more » « less
Award ID(s):
1231306
PAR ID:
10587702
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Biopolymers
Date Published:
Journal Name:
Biopolymers
Volume:
112
Issue:
6
ISSN:
0006-3525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cave‐dwelling animals thrive in isolated caves despite the pressures of darkness, starvation, and reduced oxygen. Prior work revealed thatAstyanaxcave‐dwelling morphs derived from different cave localities express significantly higher levels of blood hemoglobin compared to surface‐dwelling fish. Interestingly, this elevation is maintained in different populations of cavefish, despite captive rearing in normal oxygen conditions. We capitalized on the consistent response of elevated hemoglobin in captive cavefish, which were derived from geographically distinct regions, to determine if this elevation is underpinned by expression of the sameHbgenes. Blood hemoglobin proteins are encoded by a large family ofhemoglobin(Hb) gene family members, which demonstrate coordinated expression patterns, subject to various organismal (e.g., period of life history) and environmental influences (e.g., oxygen availability). Surprisingly, we found that geographically distinct populations showed mostly divergent patterns ofHbgene expression. Cavefish from two cave localities, Pachón and Tinaja, have a more recent shared origin, and show more similarHbexpression patterns as adults. However, during embryonic phases, Pachón and Tinaja show significant variability in timing of peak expression ofHbfamily members. In sum, the transcriptomic underpinnings ofHbgene expression represents a complex composite of shared and divergent expression patterns across three captive cavefish populations. We conclude that these differential patterns are likely influenced by life history, and the unique cave conditions in which these animals evolved. 
    more » « less
  2. Starch is a polysaccharide that is abundantly found in nature and is generally used as an energy source and energy storage in many biological and environmental processes. Naturally, starch tends to be in miniscule amounts, creating a necessity for quantitative analysis of starch in low-concentration samples. Existing studies that are based on the spectrophotometric detection of starch using the colorful amylose–iodine complex lack a detailed description of the analytical procedure and important parameters. In the present study, this spectrophotometry method was optimized, tested, and applied to studying starch content of atmospheric bioaerosols such as pollen, fungi, bacteria, and algae, whose chemical composition is not well known. Different experimental parameters, including pH, iodine solution concentrations, and starch solution stability, were tested, and method detection limit (MDL) and limit of quantification (LOQ) were determined at 590 nm. It was found that the highest spectrophotometry signal for the same starch concentration occurs at pH 6.0, with an iodine reagent concentration of 0.2%. The MDL was determined to be 0.22 μg/mL, with an LOQ of 0.79 μg/mL. This optimized method was successfully tested on bioaerosols and can be used to determine starch content in low-concentration samples. Starch content in bioaerosols ranged from 0.45 ± 0.05 (in bacteria) to 4.3 ± 0.06 μg/mg (in fungi). 
    more » « less
  3. Oxygen therapeutics has a range of applications in transfusion medicine and disease treatment. Synthetic molecules and all‐natural or semisynthetic hemoglobin‐based oxygen carriers (HBOCs) have seen success as potential circulating oxygen carriers. However, many early HBOC products stalled in development due to side effects from excess hemoglobin in the blood stream and hemoglobin entering the tissue. To overcome these issues, research has focused on increasing the molecular diameter of hemoglobin by polymerizing hemoglobin molecules or encapsulating hemoglobin in liposomal carriers. This work leverages the properties of silk fibroin, a cytocompatible and nonthrombogenic biopolymer, known to entrap protein‐based cargo, to engineer a fully protein‐based oxygen carrier. Herein, an all‐aqueous solvent evaporation technique is used to form silk particles via phase separation from a bulk polyvinyl alcohol phase. Particle size is tuned, and particles are formed with and without hemoglobin. The encapsulation efficiency and ferrous state of hemoglobin are analyzed, resulting in 60% encapsulation efficiency and a maximum of 20% ferric hemoglobin, yielding 100 μg mL−1active hemoglobin in certain silk fibroin‐HBOCs formulations. The system does not elicit a strong inflammation response in vitro, demonstrating the potential for this particle system to serve as an injectable HBOC. 
    more » « less
  4. Abstract DNA serves as a model system in polymer physics due to its ability to be obtained as a uniform polymer with controllable topology and non‐equilibrium behavior. Currently, a major obstacle in the widespread adoption of DNA is obtaining it on a scale and cost basis that accommodates bulk rheology and high‐throughput screening. To address this, recent advancements in bioreactor‐based plasmid DNA production is coupled with anion exchange chromatography to produce a unified approach to generating gram‐scale quantities of monodisperse DNA. With this method, 1.1 grams of DNA is obtained per batch to generate solutions with concentrations up to 116 mg mL−1of uniform supercoiled and relaxed circular plasmid DNA, which is roughly 69 times greater than the overlap concentration. The utility of this method is demonstrated by performing bulk rheology measurements on DNA of different length, topologies, and concentrations at sample volumes up to 1 mL. The measured elastic moduli are orders of magnitude larger than those previously reported for DNA and allowed for the construction of a time‐concentration superposition curve that spans twelve decades of frequency. Ultimately, these results could provide important insights into the dynamics of ring polymers and the nature of highly condensed DNA dynamics. This article is protected by copyright. All rights reserved 
    more » « less
  5. Nowadays, non-volatile memory technologies have been widely applied in different areas. Of these memory technologies, non-volatile resistive random access memory (ReRAM) is attractive because of its simple device architecture and fabrication process, high scalability and data density, good performances in terms of switching speed, high power efficiency and reasonably wide memory window. In order to address the issues of disposable and degradation of electronic waste by typical ReRAM with the active layer made of inorganic oxide materials and fossil-fuel based polymeric materials, a green and sustainable strategy has been adopted in producing ReRAM by using natural organic-based materials based on protein and carbohydrate, such as honey, fructose, aloe vera, etc. Among these materials, pectin-polysaccharide thin film has demonstrated promising resistive switching characteristics. The two ranges of pectin concentrations that have been investigated are ³5 mg/ml and £1.5 mg/ml, and it showed that pectin with concentration <1.5 mg/ml reveals a higher ON/OFF ratio. However, the resistive switching characteristics with pectin concentration between 1.5 mg/ml and 5 mg/ml have yet been explored and reported. In this work, pectin with concentrations of 1.5~5 mg/ml were prepared from pectin-polysaccharide solution into the active switching layer, and ReRAM devices with such pectin resistive switching layer were fabricated. The pectin-polysaccharide solution, pectin resistive film, and ReRAM devices were systematically investigated. Surface tension and contact angle of pectin-polysaccharide precursor solutions as a function of pectin concentration on the substrate were measured by a goniometer. Surface topography of solidified thin films was characterized by an atomic force microscope (AFM) and a field-emission scanning electron microscope (FE-SEM). Chemical functional groups of the pectin-polysaccharide precursor solutions and solidified thin films were examined by a Fourier transform infrared (FTIR) spectroscopy. The resistive switching behaviors were characterized and compared by electrical measurement. The results show that 4 mg/ml recorded the highest ON/OFF ratio compared to ever reported values, as well as desirable memory window, non-volatility in retention, and stability over 100 cycles. This study proves that pectin-polysaccharide is a promising green and sustainable bio-organic material for non-volatile ReRAM for electronic applications such as in emerging neuromorphic computing systems. 
    more » « less