Abstract Mass spectrometry imaging (MSI) of volatile metabolites is challenging, especially in matrix‐assisted laser desorption/ionization (MALDI). Most MALDI ion sources operate in vacuum, which leads to the vaporization of volatile metabolites during analysis. In addition, tissue samples are often dried during sample preparation, leading to the loss of volatile metabolites even for other MSI techniques. On‐tissue chemical derivatization can dramatically reduce the volatility of analytes. Herein, a derivatization method is proposed utilizing N,N,N‐trimethyl‐2‐(piperazin‐1‐yl)ethan‐1‐aminium iodide to chemically modify short‐chain fatty acids in chicken cecum, ileum, and jejunum tissue sections before sample preparation for MSI visualization. 
                        more » 
                        « less   
                    This content will become publicly available on December 4, 2025
                            
                            Quantitative Analysis of Drugs in a Mimetic Tissue Model Using Nano-DESI on a Triple Quadrupole Mass Spectrometer
                        
                    
    
            Mass spectrometry is a powerful analytical technique used at every stage of the pharmaceutical research process. A specialized subset of this technique, mass spectrometry imaging (MSI) has emerged as an important technique for determining the spatial distribution of drugs in biological samples. Despite the importance of MSI, its quantitative capabilities are still limited due to the complexity of biological samples and the lack of separation prior to analysis. This makes the simultaneous quantification and visualization of analytes challenging. Several techniques have been developed to address this challenge and enable quantitative MSI. One of these techniques is the mimetic tissue model, which involves the incorporation of an analyte of interest into tissue homogenates at several concentrations. A calibration curve that accounts for signal suppression by the complex biological matrix is then created by measuring the signal of the analyte in the series of tissue homogenates. Herein, we use the mimetic tissue model on a triple quadrupole mass spectrometer (QqQ) in multiple reaction monitoring (MRM) mode to demonstrate the quantitative abilities of nanospray desorption electrospray ionization (nano-DESI) and compare these results with those obtained using atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI). For the tested compounds, our findings indicate that nano-DESI achieves lower standard deviations than AP-MALDI which contributes to nano-DESI also achieving lower limits of detection (LOD) for the analytes studied. Additionally, we discuss the limitations of the mimetic tissue model in the quantification of certain analytes and the challenges involved with the implementation of the model. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2108729
- PAR ID:
- 10587729
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Journal of the American Society for Mass Spectrometry
- Volume:
- 35
- Issue:
- 12
- ISSN:
- 1044-0305
- Page Range / eLocation ID:
- 3170 to 3177
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform‐specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano‐DESI MSI) for the proteoform‐selective imaging of biological tissues. Nano‐DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof‐of‐concept experiments demonstrate that nano‐DESI MSI combined with on‐tissue top‐down proteomics is ideally suited for the proteoform‐selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.more » « less
- 
            Abstract Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix‐assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI‐MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix‐free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra‐trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA‐LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA‐LDI‐MSI.more » « less
- 
            Applying solutions of matrix or derivatization agent via microdroplets is a common sample preparation technique for matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) experiments. Mobilized nebulizer sprayers are commonly used to create a homogeneous matrix or reagent layer across large surfaces. Electrospray devices have also been used to produce microdroplets for the same purpose but are rarely used for large tissues due to their immobility. Herein, we present a movable electrospray device that can be used for large tissue sample preparation by a simple modification to an automatic commercial nebulizer device. As demonstrated for on-tissue chemical derivatization (OTCD) with Girard's reagent T using a mimetic tissue model, the sprayer has the additional benefit of being able to investigate reaction acceleration in OTCD when comparing electrostatically charged spray to electrostatically neutral spray. Finally, MALDI-MSI of fatty alde-hydes is successfully demonstrated in rat brain tissues using this device for both OTCD and matrix application.more » « less
- 
            Abstract Nanospray desorption electrospray ionization (nano‐DESI) is an ambient ionization mass spectrometry imaging (MSI) approach that enables spatial mapping of biological and environmental samples with high spatial resolution and throughput. Because nano‐DESI has not yet been commercialized, researchers develop their own sources and interface them with different commercial mass spectrometers. Previously, several protocols focusing on the fabrication of nano‐DESI probes have been reported. In this tutorial, we discuss different hardware requirements for coupling the nano‐DESI source to commercial mass spectrometers, such as the safety interlock, inlet extension, and contact closure. In addition, we describe the structure of our custom software for controlling the nano‐DESI MSI platform and provide detailed instructions for its usage. With this tutorial, interested researchers should be able to implement nano‐DESI experiments in their labs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
