skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pump-Probe Time-Resolved Serial Femtosecond Crystallography at X-Ray Free Electron Lasers
With time-resolved crystallography (TRX), it is possible to follow the reaction dynamics in biological macromolecules by investigating the structure of transient states along the reaction coordinate. X-ray free electron lasers (XFELs) have enabled TRX experiments on previously uncharted femtosecond timescales. Here, we review the recent developments, opportunities, and challenges of pump-probe TRX at XFELs.  more » « less
Award ID(s):
1231306
PAR ID:
10587753
Author(s) / Creator(s):
; ;
Publisher / Repository:
Crystals
Date Published:
Journal Name:
Crystals
Volume:
10
Issue:
7
ISSN:
2073-4352
Page Range / eLocation ID:
628
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Giulivi, Cecilia (Ed.)
    Thioredoxin/glutathione reductase (TGR) from the platyhelminthic parasitic worms has recently been identified as a drug target for the treatment of schistosomiasis. Schistosomes lack catalase, and so are heavily reliant on the regeneration of reduced thioredoxin (Trx) and glutathione (GSH) to reduce peroxiredoxins that ameliorate oxidative damage from hydrogen peroxide generated by the host immune response. This study focuses on the characterization of the catalytic mechanism ofSchistosoma mansoniTGR (SmTGR). Variant forms of SmTGR were studied to assign the function of residues that participate in the electron distribution chain within the enzyme. Using anaerobic transient state spectrophotometric methods, redox changes for the FAD and NADPH were observed and the function of specific residues was defined from observation of charge transfer absorption transitions that are indicative of specific complexations and redox states. The C159S variant prevented distribution of electrons beyond the flavin and as such did not accumulate thiolate-FAD charge transfer absorption. The lack of this absorption facilitated observation of a new charge transfer absorption consistent with proximity of NADPH and FAD. The C159S variant was used to confine electrons from NADPH at the flavin, and it was shown that NADPH and FAD exchange hydride in both directions and come to an equilibrium that yields only fractional FAD reduction, suggesting that both have similar reduction potentials. Mutation of U597 to serine resulted in sustained thiolate-FAD charge transfer absorption and loss of the ability to reduce Trx, indicating that the C596-U597 disulfide functions in the catalytic sequence to receive electrons from the C154 C159 pair and distribute them to Trx. No kinetic evidence for a loss or change in function associated with the distal C28-C31 disulfide was observed when the C31S variant reductive half-reaction was observed. The Y296A variant was shown to slow the rate of but increase extent of reduction of the flavin, and the dissociation of NADP+. The H571 residue was confirmed to be the residue responsible for the deprotonation of the C159 thiol, increasing its reactivity and generating the prominent thiolate-FAD charge transfer absorption that accumulates with oxidation of the flavin. 
    more » « less
  2. Abstract The triel bond (TrB) formed between Be(CH3)2/Mg(CH3)2and TrX3(Tr=B, Al, and Ga; X=H, F, Cl, Br, and I) is investigated via the MP2/aug‐cc‐pVTZ(PP) quantum chemical protocol. The C atoms of the methyl groups in M(CH3)2are characterized by a negative electrostatic potential and act as an electron donor in a triel bond with the π‐hole above the Tr atom of planar TrX3. The interaction energy spans a wide range between −2 and −69 kcal/mol. Mg(CH3)2forms a stronger TrB than does Be(CH3)2, which comports with the more negative electrostatic potential on its methyl groups. Some of the complexes involving Mg display a high degree of transfer of the methyl group from Mg to Tr, which is accompanied by an inversion of the bridging methyl and a sizable pyramidalization of the TrX3unit. The geometries of these complexes have the properties of the long sought pentacoordinate C which has eluded identification and characterization in the past. 
    more » « less
  3. Abstract Sample consumption for serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) remains a major limitation preventing broader use of this powerful technology in macromolecular crystallography. This drawback is exacerbated in the case of time-resolved (TR)-SFX experiments, where the amount of sample required per reaction time point is multiplied by the number of time points investigated. Thus, in order to reduce the limitation of sample consumption, here we demonstrate the implementation of segmented droplet generation in conjunction with a mix-and-inject approach for TR studies on NAD(P)H:quinone oxidoreductase 1 (NQO1). We present the design and application of mix-and-inject segmented droplet injectors for the Single Particles, Clusters, and Biomolecules & Serial Femtosecond Crystallography (SPB/SFX) instrument at the European XFEL (EuXFEL) with a synchronized droplet injection approach that allows liquid phase protein crystal injection. We carried out TR-crystallography experiments with this approach for a 305 ms and a 1190 ms time point in the reaction of NQO1 with its coenzyme NADH. With this successful TR-SFX approach, up to 97% of the sample has been conserved compared to continuous crystal suspension injection with a gas dynamic virtual nozzle. Furthermore, the obtained structural information for the reaction of NQO1 with NADH is an important part of the future elucidation of the reaction mechanism of this crucial therapeutic enzyme. 
    more » « less
  4. The field of time-resolved macromolecular crystallography has been expanding rapidly after free electron lasers for hard x rays (XFELs) became available. Techniques to collect and process data from XFELs spread to synchrotron light sources. Although time-scales and data collection modalities can differ substantially between these types of light sources, the analysis of the resulting x-ray data proceeds essentially along the same pathway. At the base of a successful time-resolved experiment is a difference electron density (DED) map that contains chemically meaningful signal. If such a difference map cannot be obtained, the experiment has failed. Here, a practical approach is presented to calculate DED maps and use them to determine structural models. 
    more » « less
  5. NEET proteins are conserved 2Fe-2S proteins that regulate the levels of iron and reactive oxygen species in plant and mammalian cells. Previous studies of seedlings with constitutive expression of AtNEET, or its dominant-negative variant H89C (impaired in 2Fe-2S cluster transfer), revealed that disrupting AtNEET function causes oxidative stress, chloroplast iron overload, activation of iron-deficiency responses, and cell death. Because disrupting AtNEET function is deleterious to plants, we developed an inducible expression system to study AtNEET function in mature plants using a time-course proteomics approach. Here, we report that the suppression of AtNEET cluster transfer function results in drastic changes in the expression of different members of the ferredoxin (Fd), Fd-thioredoxin (TRX) reductase (FTR), and TRX network of Arabidopsis, as well as in cytosolic cluster assembly proteins. In addition, the expression of Yellow Stripe-Like 6 (YSL6), involved in iron export from chloroplasts was elevated. Taken together, our findings reveal new roles for AtNEET in supporting the Fd-TFR-TRX network of plants, iron mobilization from the chloroplast, and cytosolic 2Fe-2S cluster assembly. In addition, we show that the AtNEET function is linked to the expression of glutathione peroxidases (GPXs), which play a key role in the regulation of ferroptosis and redox balance in different organisms. 
    more » « less