skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scanless laser waveform measurement in the near-infrared
Field-resolved measurements of few-cycle laser waveforms allow access to ultrafast electron dynamics in light–matter interactions and are key to future lightwave electronics. Recently, sub-cycle gating based on nonlinear excitation in active pixel sensors has allowed the first single-shot measurements of mid-infrared optical fields. Extending the techniques to shorter wavelengths, however, is not feasible using silicon-based detectors with bandgaps in the near-infrared. Here, we demonstrate an all-optical sampling technique for near-infrared laser fields, wherein an intense fundamental field generates a sub-cycle gate through nonlinear excitation of a wide-bandgap crystal, in this case, ZnO, which can sample the electric field of a weak perturbing pulse. By using a crossed-beam geometry, the temporal evolution of the perturbing field is mapped onto a transverse spatial axis of the nonlinear medium, and the waveform is captured in a single measurement of the spatially resolved fluorescence emission from the crystal. The technique is demonstrated through field-resolved measurements of the field reshaping during nonlinear propagation in the ZnO detection crystal.  more » « less
Award ID(s):
2409415 2010365
PAR ID:
10587800
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AIP publishing
Date Published:
Journal Name:
APL Photonics
Volume:
10
Issue:
1
ISSN:
2378-0967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrafast laser pulse beams are four-dimensional, space–time phenomena that can exhibit complicated, coupled spatial and temporal profiles. Tailoring the spatiotemporal profile of an ultrafast pulse beam is necessary to optimize the focused intensity and to engineer exotic spatiotemporally shaped pulse beams. Here we demonstrate a single-pulse, reference-free spatiotemporal characterization technique based on two colocated synchronized measurements: (1) broadband single-shot ptychography and (2) single-shot frequency resolved optical gating. We apply the technique to measure the nonlinear propagation of an ultrafast pulse beam through a fused silica window. Our spatiotemporal characterization method represents a major contribution to the growing field of spatiotemporally engineered ultrafast laser pulse beams. 
    more » « less
  2. The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we study light–matter interaction in van der Waals MoS2nanophotonic devices. We show that light can be coupled and guided in structures with dimensions as small as ≃λ/16 (∼60nm at 1000 nm excitation wavelength), while offering unprecedented optical field confinement. This deep subwavelength optical field confinement is achieved by exploiting strong lightwave dispersion in MoS2. We further study the performance of a range of nanophotonic integrated devices via far- and near-field measurements. Our near-field measurements reveal detailed imaging of excitation, evolution, and guidance of fields in nanostructured MoS2, whereas our far-field study examines light excitation and coupling to highly confined integrated photonics. Nanophotonics at a fraction of a wavelength demonstrated here could dramatically reduce the size of integrated photonic devices and opto-electronic circuits with potential applications in optical information science and engineering. 
    more » « less
  3. We present a low-noise (<10 µrad/Hz) broadband Faraday Rotation Spectroscopy method which is feasible for near-ultraviolet through near-infrared wavelengths. We demonstrate this in the context of a high-precision spectroscopy experiment using a heated Pb vapor cell and two different lasers, one in the UV (368 nm) and a second in the IR (1279 nm). A key element of the experimental technique is the use of a uniaxial single crystal CeF3 Faraday modulator with excellent transmission and optical rotation properties across the aforementioned wavelength range. Polarimeter performance is assessed as a function of crystal orientation and alignment, AC modulation amplitude, laser power, and laser wavelength. Crystal-induced distortion of the (6p2)3P0→(6p2)3P1 (1279 nm) and (6p2)3P1→(6p7s)3P0 (368 nm) spectral lines due to misalignment-induced birefringence is discussed and modeled using the Jones calculus. 
    more » « less
  4. We report an experiment to measure the femtosecond electric field of the signal emitted from an optical third-order nonlinear interaction in carbon dioxide molecules. Using degenerate four-wave mixing with femtosecond near infrared laser pulses in combination with the ultra-weak femtosecond pulse measurement technique of TADPOLE, we measure the nonlinear signal electric field in the time domain at different time delays between the interacting pulses. The chirp extracted from the temporal phase of the emitted nonlinear signal is found to sensitively depend on the electronic and rotational contributions to the nonlinear response. While the rotational contribution results in a nonlinear signal chirp close to the chirp of the input pulses, the electronic contribution results in a significantly higher chirp which changes with time delay. Our work demonstrates that electric field-resolved nonlinear spectroscopy offers detailed information on nonlinear interactions at ultrafast time scales. 
    more » « less
  5. A continuous-wave optical parametric oscillator was used to produce spectrally resolved, infrared laser-induced fluorescence (IR-LIF) signals of CO2in a heated jet. Spatially resolved temperature measurements were obtained by spectral fitting to the IR-LIF signals. 
    more » « less