Abstract Aqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear. Herein, we design an interface material consisting of forest-like three-dimensional zinc-copper alloy with engineered surfaces to explore the Zn plating/stripping mode in dual-cation electrolytes. The three-dimensional nanostructured surface of zinc-copper alloy is demonstrated to be in favor of effectively regulating the reaction kinetics of Zn plating/stripping processes. The developed interface materials suppress the dendrite growth on the anode surface towards high-performance persistent aqueous zinc-ion batteries in the aqueous electrolytes containing single and dual cations. This work remarkably enhances the fundamental understanding of dual-cation intercalation chemistry in aqueous electrochemical systems and provides a guide for exploring high-performance aqueous zinc-ion batteries and beyond.
more »
« less
Hydrous Transition Metal Oxides for Electrochemical Energy and Environmental Applications
Hydrous transition metal oxides (TMOs) are redox-active materials that confine structural water within their bulk, organized in 1D, 2D, or 3D networks. In an electrochemical cell, hydrous TMOs can interact with electrolyte species not only via their outer surface but also via their hydrous inner surface, which can transport electrolyte species to the interior of the material. Many TMOs operating in an aqueous electrochemical environment transform to hydrous TMOs, which then serve as the electrochemically active phase. This review summarizes the physicochemical properties of hydrous TMOs and recent mechanistic insights into their behavior in electrochemical reactions of interest for energy storage, conversion, and environmental applications. Particular focus is placed on first-principles calculations and operando characterization to obtain an atomistic view of their electrochemical mechanisms. Hydrous TMOs represent an important class of energy and environmental materials in aqueous and nonaqueous environments. Further understanding of their interaction with electrolyte species is likely to yield advancements in electrochemical reactivity and kinetics for energy and environmental applications.
more »
« less
- Award ID(s):
- 1653827
- PAR ID:
- 10587991
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Materials Research
- Volume:
- 53
- Issue:
- 1
- ISSN:
- 1531-7331
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study reports the accuracy and applications of an attenuated total reflectance–surface-enhanced infrared absorption spectroscopy (ATR–SEIRAS) technique to indirectly measure the interfacial pH of the electrolyte within 10 nm of the electrocatalyst surface. This technique can be used in situ to study aqueous electrochemical reactions with a calibration range from pH 1–13, time resolution down to 4 s, and an average 95% confidence interval of 14% that varies depending on the pH region (acidic, neutral, or basic). The method is applied here to electrochemical nitrate reduction at a copper cathode to demonstrate its capabilities, but is broadly applicable to any aqueous electrochemical reaction (such as hydrogen evolution, carbon dioxide reduction, or oxygen evolution) and the electrocatalyst may be any SEIRAS-active thin film (e.g., silver, gold, or copper). The time-resolved results show a dramatic increase in the interfacial pH from pH 2–7 in the first minute of operation during both constant current and pulsed current experiments where the bulk pH is unchanged. Attempts to control the pH polarization at the surface by altering the electrochemical operating conditions—lowering the current or increasing the pulse frequency—showed no significant change, demonstrating the challenge of controlling the interfacial pH.more » « less
-
Abstract Metal anode instability, including dendrite growth, metal corrosion, and hetero-ions interference, occurring at the electrolyte/electrode interface of aqueous batteries, are among the most critical issues hindering their widespread use in energy storage. Herein, a universal strategy is proposed to overcome the anode instability issues by rationally designing alloyed materials, using Zn-M alloys as model systems (M = Mn and other transition metals). An in-situ optical visualization coupled with finite element analysis is utilized to mimic actual electrochemical environments analogous to the actual aqueous batteries and analyze the complex electrochemical behaviors. The Zn-Mn alloy anodes achieved stability over thousands of cycles even under harsh electrochemical conditions, including testing in seawater-based aqueous electrolytes and using a high current density of 80 mA cm−2. The proposed design strategy and the in-situ visualization protocol for the observation of dendrite growth set up a new milestone in developing durable electrodes for aqueous batteries and beyond.more » « less
-
Abstract Porous carbons are the active materials of choice for supercapacitor applications because of their power capability, long-term cycle stability, and wide operating temperatures. However, the development of carbon active materials with improved physicochemical and electrochemical properties is generally carried out via time-consuming and cost-ineffective experimental processes. In this regard, machine-learning technology provides a data-driven approach to examine previously reported research works to find the critical features for developing ideal carbon materials for supercapacitors. Here, we report the design of a machine-learning-derived activation strategy that uses sodium amide and cross-linked polymer precursors to synthesize highly porous carbons (i.e., with specific surface areas > 4000 m2/g). Tuning the pore size and oxygen content of the carbonaceous materials, we report a highly porous carbon-base electrode with 0.7 mg/cm2of electrode mass loading that exhibits a high specific capacitance of 610 F/g in 1 M H2SO4. This result approaches the specific capacitance of a porous carbon electrode predicted by the machine learning approach. We also investigate the charge storage mechanism and electrolyte transport properties via step potential electrochemical spectroscopy and quasielastic neutron scattering measurements.more » « less
-
Aqueous Li-ion batteries (ALIBs) are an important class of battery chemistries owing to the intrinsic non-flammability of aqueous electrolytes. However, water is detrimental to most cathode materials and could result in rapid cell failure. Identifying the degradation mechanisms and evaluating the pros and cons of different cathode materials are crucial to guide the materials selection and maximize their electrochemical performance in ALIBs. In this study, we investigate the stability of LiFePO4(LFP), LiMn2O4(LMO) and LiNi0.8Mn0.1Co0.1O2(NMC) cathodes, without protective coating, in three different aqueous electrolytes, i.e., salt-in-water, water-in-salt, and molecular crowding electrolytes. The latter two are the widely reported “water-deficient electrolytes.” LFP cycled in the molecular crowding electrolyte exhibits the best cycle life in both symmetric and full cells owing to the stable crystal structure. Mn dissolution and surface reduction accelerate the capacity decay of LMO in water-rich electrolyte. On the other hand, the bulk structural collapse leads to the degradation of NMC cathodes. LMO demonstrates better full-cell performance than NMC in water-deficient aqueous electrolytes. LFP is shown to be more promising than LMO and NMC for long-cycle-life ALIB full cells, especially in the molecular crowding electrolyte. However, none of the aqueous electrolytes studied here provide enough battery performance that can compete with conventional non-aqueous electrolytes. This work reveals the degradation mechanisms of olivine, spinel, and layered cathodes in different aqueous electrolytes and yields insights into improving electrode materials and electrolytes for ALIBs.more » « less
An official website of the United States government

