Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein–protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5′-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.
more »
« less
This content will become publicly available on March 1, 2026
Arrested coalescence, aging, and stability of asters composed of microtubules and kinesin motors
The spontaneous formation of contractile asters is ubiquitous in reconstituted active materials composed of biopolymers and molecular motors. Asters are radially oriented biopolymers or biopolymer bundles with a dense motor-rich core. The microscopic origins of their material properties and their stability are unknown. Recent efforts highlighted how motor-filament and filament-filament interactions control the formation of asters composed of microtubules and kinesin motors. However, the impact of motor-motor interactions is less understood, despite growing evidence that molecular motors often spontaneously aggregate, both and . In this article, we combine experiments and simulations to reveal the origin of the arrested coarsening, aging, and stability of contractile asters composed of microtubules, clusters of adenosine triphosphate (ATP)-powered kinesin-1 motors, and a depletant. Asters coalesce into larger asters upon collision. We show that the spontaneous aggregation of motor clusters drives the solidification of aster cores, arresting their coalescence. We detect aggregation of motor clusters at the single microtubule level, where the uncaging of additional ATP drives the delayed but sudden detachment of large motor aggregates from isolated microtubules. Computer simulations of cytoskeletal assemblies demonstrate that decreasing the motors' unbinding rate slows down the aster's coalescence. Changing the motors' binding rate did not impact the aster's coalescence dynamics. Finally, we show that the aggregation of motor clusters and aster aging result from the combined effects of depletion forces and nonspecific binding of the clusters to themselves. We propose alternative formulations that mitigate these effects, and prevent aster aging. The resulting self-organized structures have a finite lifetime, which reveals that motor aggregation is crucial for maintaining aster's stability. Overall, these experiments and simulations enhance our understanding of how to rationally design long-lived and stable contractile materials from cytoskeletal proteins. Published by the American Physical Society2025
more »
« less
- PAR ID:
- 10588088
- Publisher / Repository:
- Phys. Rev. Research
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The centrosomal aster is a mobile and adaptable cellular organelle that exerts and transmits forces necessary for tasks such as nuclear migration and spindle positioning. Recent experimental and theoretical studies of nematode and human cells demonstrate that pulling forces on asters by cortically anchored force generators are dominant during such processes. Here, we present a comprehensive investigation of the S-model (S for stoichiometry) of aster dynamics based solely on such forces. The model evolves the astral centrosome position, a probability field of cell-surface motor occupancy by centrosomal microtubules (under an assumption of stoichiometric binding), and free boundaries of unattached, growing microtubules. We show how cell shape affects the stability of centering of the aster, and its transition to oscillations with increasing motor number. Seeking to understand observations in single-cell nematode embryos, we use highly accurate simulations to examine the nonlinear structures of the bifurcations, and demonstrate the importance of binding domain overlap to interpreting genetic perturbation experiments. We find a generally rich dynamical landscape, dependent upon cell shape, such as internal constant-velocity equatorial orbits of asters that can be seen as traveling wave solutions. Finally, we study the interactions of multiple asters which we demonstrate an effective mutual repulsion due to their competition for surface force generators. We find, amazingly, that centrosomes can relax onto the vertices of platonic and nonplatonic solids, very closely mirroring the results of the classical Thomson problem for energy-minimizing configurations of electrons constrained to a sphere and interacting via repulsive Coulomb potentials. Our findings both explain experimental observations, providing insights into the mechanisms governing spindle positioning and cell division dynamics, and show the possibility of new nonlinear phenomena in cell biology. Published by the American Physical Society2025more » « less
-
Living systems exhibit self-organization, a phenomenon that enables organisms to perform functions essential for life. The interior of living cells is a crowded environment in which the self-assembly of cytoskeletal networks is spatially constrained by membranes and organelles. Cytoskeletal filaments undergo active condensation in the presence of crosslinking motor proteins. In past studies, confinement has been shown to alter the morphology of active condensates. Here, we perform simulations to explore systems of filaments and crosslinking motors in a variety of confining geometries. We simulate spatial confinement imposed by hard spherical, cylindrical, and planar boundaries. These systems exhibit non-equilibrium condensation behavior where crosslinking motors condense a fraction of the overall filament population, leading to coexistence of vapor and condensed states. We find that the confinement lengthscale modifies the dynamics and condensate morphology. With end-pausing crosslinking motors, filaments self-organize into half asters and fully-symmetric asters under spherical confinement, polarity-sorted bilayers and bottle-brush-like states under cylindrical confinement, and flattened asters under planar confinement. The number of crosslinking motors controls the size and shape of condensates, with flattened asters becoming hollow and ring-like for larger motor number. End pausing plays a key role affecting condensate morphology: systems with end-pausing motors evolve into aster-like condensates while those with non-end-pausing crosslinking motor proteins evolve into disordered clusters and polarity-sorted bundles.more » « less
-
Cytoskeletal active nematics exhibit striking nonequilibrium dynamics that are powered by energy-consuming molecular motors. To gain insight into the structure and mechanics of these materials, we design programmable clusters in which kinesin motors are linked by a double-stranded DNA linker. The efficiency by which DNA-based clusters power active nematics depends on both the stepping dynamics of the kinesin motors and the chemical structure of the polymeric linker. Fluorescence anisotropy measurements reveal that the motor clusters, like filamentous microtubules, exhibit local nematic order. The properties of the DNA linker enable the design of force-sensing clusters. When the load across the linker exceeds a critical threshold, the clusters fall apart, ceasing to generate active stresses and slowing the system dynamics. Fluorescence readout reveals the fraction of bound clusters that generate interfilament sliding. In turn, this yields the average load experienced by the kinesin motors as they step along the microtubules. DNA-motor clusters provide a foundation for understanding the molecular mechanism by which nanoscale molecular motors collectively generate mesoscopic active stresses, which in turn power macroscale nonequilibrium dynamics of active nematics.more » « less
-
Merks, Roeland M.H. (Ed.)In cells, multiple molecular motors work together as teams to carry cargoes such as vesicles and organelles over long distances to their destinations by stepping along a network of cytoskeletal filaments. How motors that typically mechanically interfere with each other, work together as teams is unclear. Here we explored the possibility that purely physical mechanisms, such as cargo surface fluidity, may potentially enhance teamwork, both at the single motor and cargo level. To explore these mechanisms, we developed a three dimensional simulation of cargo transport along microtubules by teams of kinesin-1 motors. We accounted for cargo membrane fluidity by explicitly simulating the Brownian dynamics of motors on the cargo surface and considered both the load and ATP dependence of single motor functioning. Our simulations show that surface fluidity could lead to the reduction of negative mechanical interference between kinesins and enhanced load sharing thereby increasing the average duration of single motors on the filament. This, along with a cooperative increase in on-rates as more motors bind leads to enhanced collective processivity. At the cargo level, surface fluidity makes more motors available for binding, which can act synergistically with the above effects to further increase transport distances though this effect is significant only at low ATP or high motor density. Additionally, the fluid surface allows for the clustering of motors at a well defined location on the surface relative to the microtubule and the fluid-coupled motors can exert more collective force per motor against loads. Our work on understanding how teamwork arises in cargo-coupled motors allows us to connect single motor properties to overall transport, sheds new light on cellular processes, reconciles existing observations, encourages new experimental validation efforts and can also suggest new ways of improving the transport of artificial cargo powered by motor teams.more » « less
An official website of the United States government
