skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Enhanced luminescence of oxygen atoms and nitrogen molecules in nitrogen–krypton nanoclusters
We studied luminescence accompanied by an injection of nitrogen–krypton–helium gas mixtures after passing radiofrequency discharge into dense cold helium gas. In the cold helium gas N2–Kr nanoclusters were formed, with a core of Kr atoms and N2 molecules on the surface. Atomic nitrogen and oxygen resided in the N2 surface layers. When the temperature in the observation zone was in the range of 20–36 K, we observed enhanced emission of oxygen atom β-group and molecular nitrogen Vegard–Kaplan bands from N2–Kr nanoclusters. At these temperatures, nitrogen atoms efficiently recombine on the surface of nanoclusters with the formation of exited nitrogen molecules, leading to enhanced emission of Vegard–Kaplan bands. Simultaneously, the energy transfer from exited nitrogen molecules to the oxygen atoms enhanced O atom β-group emission.  more » « less
Award ID(s):
2104756
PAR ID:
10588094
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Low Temperature Physics
Volume:
51
Issue:
4
ISSN:
1063-777X
Page Range / eLocation ID:
426 to 435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We studied luminescence accompanied an injection of the nitrogen-helium gas mixture after passing discharge into dense cold helium gas. Initially, when the experimental beaker was filled with superfluid helium and the nitrogen-helium gas was injected into bulk superfluid helium at T ≈ 1.5 K, the dominant band in the emission spectra was the α-group of nitrogen atoms. At these conditions, the nanoclusters of molecular nitrogen with high concentrations of stabilized nitrogen atoms were formed. When superfluid helium was evaporated from the beaker and the temperature at the bottom of the beaker was increased to T ≈ 20 K, we observed a drastic change in the luminescence spectra. The β-group of oxygen atoms was dominated in the luminescence spectra, and the emission of the α-group became small. At high temperatures (T ≈ 20 K), most of the nitrogen atoms recombine on the surface of N2 nanoclusters with the formation of excited nitrogen molecules. We explained the effect of the enhancement of β-group emission by effective energy transfer from excited nitrogen molecules to the stabilized impurity oxygen atom inside N2 nanoclusters. 
    more » « less
  2. The decay dynamics of the α-group ( 2D →4S transition) of N atoms stabilized in the collection of N2–Ne nanoclusters were studied at a temperature of 1.3 K. The variation of the N2/Ne ratio in nanoclusters results in substantial changes in the luminescence spectra of the α-group and in the characteristic decay times for the components of these spectra. In all obtained α-group spectra, the narrow component at λ = 519.9 nm was observed. The spectroscopic results provide information about the structure of the nitrogen–neon nanoclusters. At elevated temperatures ( ≈ 15–36 K), enhanced oxygen β-group luminescence is observed in N2–Ne nanoclusters, with a smaller intensity enhancement than those observed within pure N2 and mixed N2–Kr nanoclusters. These results confirm the energy transfer mechanism, in which excited nitrogen molecules formed on the nanocluster surface transfer energy to the stabilized oxygen atoms through the chain of N2 molecules in a solid matrix. 
    more » « less
  3. Impurity-helium condensates (IHCs) formed by injecting the discharge products of gaseous mixtures of helium atoms and nitrogen molecules into bulk superfluid 4He at temperature 1.5 K, were studied by X-band electron spin resonance. IHCs consists of collections of N2 nanoclusters which form aerogel-like structure inside bulk HeII. It was found that N2 nanoclusters have a two shell structure, an outer shell which contains high concentration of stabilized N atoms and an interior shell with lower concentrations of N atoms. In this paper, we have studied the dependence of the shell structure of the N2 nanoclusters which compose the IHCs by varying the ratio of nitrogen to helium in the prepared gas mixture from 0.06 to 1%. The highest local concentration of N atoms in nanoclusters (1.2 ⋅ 1021 cm−3 ) was observed in the sample prepared from the gas mixture containing the lowest nitrogen admixture (0.06%). Additionally, the evolution of nanocluster structure was studied as the samples were drained of liquid helium (T ≤ 3.5 K) and warmed beyond the point of explosive recombination (3.5 K ≤ T ≤ 6.5 K). 
    more » « less
  4. We studied the electron spin resonance (ESR) spectra of nitrogen atoms stabilized in nitrogen-neon nanoclusters immersed in superfluid 4He. The nanoclusters were formed during the condensation of the products of the discharge in N2–Ne–He gas mixtures into bulk superfluid 4He at temperature 1.5 K. We studied nanoclusters formed by injection of gas mixtures with different ratios of heavy impurities in the helium N2/(Ne + N2 ) ranging from 2% to 90%. Analysis of the ESR spectra of nitrogen atoms stabilized in nitrogen-neon nanoclusters provides important information about the environment of the stabilized atoms and a shell structure of the nanoclusters was revealed. For all samples studied, preferential stabilization of N atoms on the surfaces of the nanoclusters was observed. Annealing of the collection of the nanoclusters in the temperature range 1.1–10 K resulted in substantial changes in the structure of the nanoclusters. 
    more » « less
  5. Helium metastable densities in the COST Reference Microplasma Jet are estimated for a variety of He/N2 admixtures and dissipated powers by applying a collisional-radiative model to absolutely calibrated optical emission spectroscopy measurements. This is accomplished by delineating the excitation mechanisms that result in the N2(C–B) and N2+(B–X) emission bands, the latter of which is strongly coupled to the presence of helium metastables. A number of other plasma parameters are established and discussed for each operating condition including the electron energy distribution function, reduced electric field, rate constants, and electron density. With these parameters, the reaction rates for the primary ionization pathways are also calculated, emphasizing the importance of helium metastables for discharge sustainment. Good agreement with the existing literature is found for most plasma parameters and for helium metastable densities, in particular. A clear [N2]−1 relationship between the nitrogen concentration and density of helium metastables is demonstrated, as has been identified in previous studies in analogous atmospheric pressure plasma jets. This validates the efficacy of this optical technique for determining helium metastable densities and establishes it as a viable, and in many cases, more accessible alternative to other means of quantifying helium metastables in low-temperature plasmas. 
    more » « less