skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Featureless adaptive optimization accelerates functional electronic materials design
Electronic materials that exhibit phase transitions between metastable states (e.g., metal-insulator transition materials with abrupt electrical resistivity transformations) are challenging to decode. For these materials, conventional machine learning methods display limited predictive capability due to data scarcity and the absence of features that impede model training. In this article, we demonstrate a discovery strategy based on multi-objective Bayesian optimization to directly circumvent these bottlenecks by utilizing latent variable Gaussian processes combined with high-fidelity electronic structure calculations for validation in the chalcogenide lacunar spinel family. We directly and simultaneously learn phase stability and bandgap tunability from chemical composition alone to efficiently discover all superior compositions on the design Pareto front. Previously unidentified electronic transitions also emerge from our featureless adaptive optimization engine. Our methodology readily generalizes to optimization of multiple properties, enabling co-design of complex multifunctional materials, especially where prior data is sparse.  more » « less
Award ID(s):
1729303
PAR ID:
10588243
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Reviews
Volume:
7
Issue:
4
ISSN:
1931-9401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. However, there are limited methods that allow for the controlled and efficient modulation of the crystal lattice while simultaneously monitoring the changes in the electronic structure within a single sample. Here, we apply significant and controllable strain to high-quality HfTe5samples and perform electrical transport measurements to reveal the topological phase transition from a weak topological insulator phase to a strong topological insulator phase. After applying high strain to HfTe5and converting it into a strong topological insulator, we found that the resistivity of the sample increased by 190,500% and that the electronic transport was dominated by the topological surface states at cryogenic temperatures. Our results demonstrate the suitability of HfTe5as a material for engineering topological properties, with the potential to generalize this approach to study topological phase transitions in van der Waals materials and heterostructures. 
    more » « less
  2. The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities. 
    more » « less
  3. In this computational study, density functional theory (DFT) is employed to analyze the structural, electronic, elastic, and topological properties of ternary compounds MXY (M = Ti, Sn, Ir, X = Se, Te, Y = Se, Te). The effects of spin–orbit interaction and pressure‐induced strain are investigated to understand their influence on the stability, mechanical properties, and electronic behavior, paving the way for potential technological applications. The findings confirm that these compounds are inherently stable in nonmagnetic phases, with spin–orbit interaction critically influencing their energy–volume landscapes. The calculated lattice parameters, ratios of lattice constants, and bulk moduli closely align with existing data, confirming the reliability of our approach. Mechanical assessments reveal distinct behaviors: IrSe2exhibits the highest stiffness due to pronounced covalent bonding, contrasting with SnTe2's elastic anisotropy and SnSeTe's nearly isotropic properties. Electronically, most compounds show metallic characteristics, except SnSe2, which behaves as a semiconductor with an indirect, pressure‐sensitive energy bandgap. Topological analysis under varying hydrostatic pressures indicates band inversions in TiSe2, IrSe2, and SnSeTe, suggesting topological phase transitions absent in other compounds. This study enriches our understanding of these materials and refines the application of DFT in material design. 
    more » « less
  4. Abstract Spinodal architected materials with tunable anisotropy unify optimal design and manufacturing of multiscale structures. By locally varying the spinodal class, orientation, and porosity during topology optimization, a large portion of the anisotropic material space is exploited such that material is efficiently placed along principal stress trajectories at the microscale. Additionally, the bicontinuous, nonperiodic, unstructured, and stochastic nature of spinodal architected materials promotes mechanical and biological functions not explicitly considered during optimization (e.g., insensitivity to imperfections, fluid transport conduits). Furthermore, in contrast to laminated composites or periodic, structured architected materials (e.g., lattices), the functional representation of spinodal architected materials leads to multiscale, optimized designs with clear physical interpretation that can be manufactured directly, without special treatment at spinodal transitions. Physical models of the optimized, spinodal‐embedded parts are manufactured using a scalable, voxel‐based strategy to communicate with a masked stereolithography (m‐SLA) 3D printer. 
    more » « less
  5. Abstract Chalcogenide-based nonvolatile phase change materials (PCMs) have a long history of usage, from bulk disk memory to all-optic neuromorphic computing circuits. Being able to perform uniform phase transitions over a subwavelength scale makes PCMs particularly suitable for photonic applications. For switching between nonvolatile states, the conventional chalcogenide phase change materials are brought to a melting temperature to break the covalent bonds. The cooling rate determines the final state. Reversible polymorphic layered materials provide an alternative atomic transition mechanism for low-energy electronic (small domain size) and photonic nonvolatile memories (which require a large effective tuning area). The small energy barrier of breaking van der Waals force facilitates low energy, fast-reset, and melting-free phase transitions, which reduces the chance of element segregation-associated device failure. The search for such material families starts with polymorphic In2Se3, which has two layered structures that are topologically similar and stable at room temperature. In this perspective, we first review the history of different memory schemes, compare the thermal dynamics of phase transitions in amorphous-crystalline and In2Se3, detail the device implementations for all-optical memory, and discuss the challenges and opportunities associated with polymorphic memory. 
    more » « less