skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Label free identification of different cancer cells using deep learning-based image analysis
Cancer diagnostics is an important field of cancer recovery and survival with many expensive procedures needed to administer the correct treatment. Machine Learning (ML) approaches can help with the diagnostic prediction from circulating tumor cells in liquid biopsy or from a primary tumor in solid biopsy. After predicting the metastatic potential from a deep learning model, doctors in a clinical setting can administer a safe and correct treatment for a specific patient. This paper investigates the use of deep convolutional neural networks for predicting a specific cancer cell line as a tool for label free identification. Specifically, deep learning strategies for weight initialization and performance metrics are described, with transfer learning and the accuracy metric utilized in this work. The equipment used for prediction involves brightfield microscopy without the use of chemical labels, advanced instruments, or time-consuming biological techniques, giving an advantage over current diagnostic methods. In the procedure, three different binary datasets of well-known cancer cell lines were collected, each having a difference in metastatic potential. Two different classification models were adopted (EfficientNetV2 and ResNet-50) with the analysis given for each stage in the ML architecture. The training results for each model and dataset are provided and systematically compared. We found that the test set accuracy showed favorable performance for both ML models with EfficientNetV2 accuracy reaching up to 99%. These test results allowed EfficientNetV2 to outperform ResNet-50 at an average percent increase of 3.5% for each dataset. The high accuracy obtained from the predictions demonstrates that the system can be retrained on a large-scale clinical dataset.  more » « less
Award ID(s):
1935792
PAR ID:
10588270
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Machine Learning
Volume:
1
Issue:
2
ISSN:
2770-9019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundMetastatic cancer remains one of the leading causes of cancer-related mortality worldwide. Yet, the prediction of survivability in this population remains limited by heterogeneous clinical presentations and high-dimensional molecular features. Advances in machine learning (ML) provide an opportunity to integrate diverse patient- and tumor-level factors into explainable predictive ML models. Leveraging large real-world datasets and modern ML techniques can enable improved risk stratification and precision oncology. ObjectiveThis study aimed to develop and interpret ML models for predicting overall survival in patients with metastatic cancer using the Memorial Sloan Kettering-Metastatic (MSK-MET) dataset and to identify key prognostic biomarkers through explainable artificial intelligence techniques. MethodsWe performed a retrospective analysis of the MSK-MET cohort, comprising 25,775 patients across 27 tumor types. After data cleaning and balancing, 20,338 patients were included. Overall survival was defined as deceased versus living at last follow-up. Five classifiers (extreme gradient boosting [XGBoost], logistic regression, random forest, decision tree, and naive Bayes) were trained using an 80/20 stratified split and optimized via grid search with 5-fold cross-validation. Model performance was assessed using accuracy, area under the curve (AUC), precision, recall, and F1-score. Model explainability was achieved using Shapley additive explanations (SHAP). Survival analyses included Kaplan-Meier estimates, Cox proportional hazards models, and an XGBoost-Cox model for time-to-event prediction. The positive predictive value and negative predictive value were calculated at the Youden index–optimal threshold. ResultsXGBoost achieved the highest performance (accuracy=0.74; AUC=0.82), outperforming other classifiers. In survival analyses, the XGBoost-Cox model with a concordance index (C-index) of 0.70 exceeded the traditional Cox model (C-index=0.66). SHAP analysis and Cox models consistently identified metastatic site count, tumor mutational burden, fraction of genome altered, and the presence of distant liver and bone metastases as among the strongest prognostic factors, a pattern that held at both the pan-cancer level and recurrently across cancer-specific models. At the cancer-specific level, performance varied; prostate cancer achieved the highest predictive accuracy (AUC=0.88), while pancreatic cancer was notably more challenging (AUC=0.68). Kaplan-Meier analyses demonstrated marked survival separation between patients with and without metastases (80-month survival: approximately 0.80 vs 0.30). At the Youden-optimal threshold, positive predictive value and negative predictive value were approximately 70% and 80%, respectively, supporting clinical use for risk stratification. ConclusionsExplainable ML models, particularly XGBoost combined with SHAP, can strongly predict survivability in metastatic cancers while highlighting clinically meaningful features. These findings support the use of ML-based tools for patient counseling, treatment planning, and integration into precision oncology workflows. Future work should include external validation on independent cohorts, integration with electronic health records via Fast Healthcare Interoperability Resources–based dashboards, and prospective clinician-in-the-loop evaluation to assess real-world use. 
    more » « less
  2. null (Ed.)
    Abstract Development of an assay to predict response to chemotherapy has remained an elusive goal in cancer research. We report a phenotypic chemosensitivity assay for epithelial ovarian cancer based on Doppler spectroscopy of infrared light scattered from intracellular motions in living three-dimensional tumor biopsy tissue measured in vitro. The study analyzed biospecimens from 20 human patients with epithelial ovarian cancer. Matched primary and metastatic tumor tissues were collected for 3 patients, and an additional 3 patients provided only metastatic tissues. Doppler fluctuation spectra were obtained using full-field optical coherence tomography through off-axis digital holography. Frequencies in the range from 10 mHz to 10 Hz are sensitive to changes in intracellular dynamics caused by platinum-based chemotherapy. Metastatic tumor tissues were found to display a biodynamic phenotype that was similar to primary tissue from patients who had poor clinical outcomes. The biodynamic phenotypic profile correctly classified 90% [88–91% c.i.] of the patients when the metastatic samples were characterized as having a chemoresistant phenotype. This work suggests that Doppler profiling of tissue response to chemotherapy has the potential to predict patient clinical outcomes based on primary, but not metastatic, tumor tissue. 
    more » « less
  3. Surgical pathology reports contain essential diagnostic information, in free-text form, required for cancer staging, treatment planning, and cancer registry documentation. However, their unstructured nature and variability across tumor types and institutions pose challenges for automated data extraction. We present a consensus-driven, reasoning-based framework that uses multiple locally deployed large language models (LLMs) to extract six key diagnostic variables: site, laterality, histology, stage, grade, and behavior. Each LLM produces structured outputs with accompanying justifications, which are evaluated for accuracy and coherence by a separate reasoning model. Final consensus values are determined through aggregation, and expert validation is conducted by board-certified or equivalent pathologists. The framework was applied to over 4,000 pathology reports from The Cancer Genome Atlas (TCGA) and Moffitt Cancer Center. Expert review confirmed high agreement in the TCGA dataset for behavior (100.0%), histology (98.5%), site (95.2%), and grade (95.6%), with lower performance for stage (87.6%) and laterality (84.8%). In the pathology reports from Moffitt (brain, breast, and lung), accuracy remained high across variables, with histology (95.6%), behavior (98.3%), and stage (92.4%), achieving strong agreement. However, certain challenges emerged, such as inconsistent mention of sentinel lymph node details or anatomical ambiguity in biopsy site interpretations. Statistical analyses revealed significant main effects of model type, variable, and organ system, as well as model × variable × organ interactions, emphasizing the role of clinical context in model performance. These results highlight the importance of stratified, multi-organ evaluation frameworks in LLM benchmarking for clinical applications. Textual justifications enhanced interpretability and enabled human reviewers to audit model outputs. Overall, this consensus-based approach demonstrates that locally deployed LLMs can provide a transparent, accurate, and auditable solution for integrating AI-driven data extraction into real-world pathology workflows, including cancer registry abstraction and synoptic reporting. 
    more » « less
  4. Worldwide, there are currently around 18.1 million new cancer cases and 9.6 million cancer deaths yearly. Although cancer diagnosis and treatment has improved greatly in the past several decades, a complete understanding of the complex interactions between cancer cells and the tumor microenvironment during primary tumor growth and metastatic expansion is still lacking. Several aspects of the metastatic cascade require in vitro investigation. This is because in vitro work allows for a reduced number of variables and an ability to gather real-time data of cell responses to precise stimuli, decoupling the complex environment surrounding in vivo experimentation. Breakthroughs in our understanding of cancer biology and mechanics through in vitro assays can lead to better-designed ex vivo precision medicine platforms and clinical therapeutics. Multiple techniques have been developed to imitate cancer cells in their primary or metastatic environments, such as spheroids in suspension, microfluidic systems, 3D bioprinting, and hydrogel embedding. Recently, magnetic-based in vitro platforms have been developed to improve the reproducibility of the cell geometries created, precisely move magnetized cell aggregates or fabricated scaffolding, and incorporate static or dynamic loading into the cell or its culture environment. Here, we will review the latest magnetic techniques utilized in these in vitro environments to improve our understanding of cancer cell interactions throughout the various stages of the metastatic cascade. 
    more » « less
  5. Automated region of interest detection in histopathological image analysis is a challenging and important topic with tremendous potential impact on clinical practice. The deep learning methods used in computational pathology may help us to reduce costs and increase the speed and accuracy of cancer diagnosis. We started with the UNC Melanocytic Tumor Dataset cohort which contains 160 hematoxylin and eosin whole slide images of primary melanoma (86) and nevi (74). We randomly assigned 80% (134) as a training set and built an in-house deep learning method to allow for classification, at the slide level, of nevi and melanoma. The proposed method performed well on the other 20% (26) test dataset; the accuracy of the slide classification task was 92.3% and our model also performed well in terms of predicting the region of interest annotated by the pathologists, showing excellent performance of our model on melanocytic skin tumors. Even though we tested the experiments on a skin tumor dataset, our work could also be extended to other medical image detection problems to benefit the clinical evaluation and diagnosis of different tumors. 
    more » « less