IntroductionExposure to elevated temperatures during incubation is known to induce epigenetic changes that are associated with immunological and stress-response differences at a later age. Reports on its effects on the adipose tissue are still scarce. In this experiment, we investigated the effect of embryonic heat conditioning (EHC) on growth, adipose tissue mRNA and global DNA methylation in broiler chicks at day 4 post-hatch. MethodsFertile eggs were divided into two groups: control and EHC. Eggs in the control group were incubated at 37.8°C and 80% relative humidity from day 0 to day 18.5 (E0 to E18.5). The EHC eggs were subjected to an intermittent increase in temperature to 39.5°C and 80% relative humidity from E7 to E16 for 12 h (07:30–19:30) per day. On day 4 post-hatch, control and EHC chicks were subjected to 36°C using three time points: 0 (no heat challenge serving as the control), and 2 and 12 h relative to start of the heat challenge. Fifteen chicks were sampled from each group for every timepoint. Body weight was recorded before euthanasia and subcutaneous adipose tissue was collected. ResultsBody weights were similar in control and EHC groups. Diacylglycerol O-acyltransferase 2 (DGAT2) mRNA was lower in the EHC group at time 0 relative to control. Hormone-sensitive lipase (HSL) mRNA was greater in the EHC than control group at the 0 h timepoint. Heat challenge affected adipose tissue DNA methylation, with methylation highest at 12 h into the heat challenge. DiscussionThese findings highlight the dynamic molecular responses of chicks to heat stress during early post-hatch development and suggest that EHC may affect heat stress responses and adipose tissue development through mechanisms involving lipid remodeling and DNA methylation.
more »
« less
This content will become publicly available on December 1, 2025
Embryonic Thermal Programming and Dietary Baicalein Supplementation Post-Hatch: Effects on Broiler Adipose Tissue Deposition
Optimization of growth performance and fat metabolism in broilers are critical for meat quality and overall production efficiency. This experiment investigated the effects of dietary baicalein supplementation and embryonic heat conditioning (EHC) on the growth performance and adipose tissue metabolism of 10-day old broilers. Fertile eggs were divided into control and EHC groups, with EHC eggs exposed to intermittent heating (39.5 °C) from day 7 to day 16 of incubation. Hatched chicks were further divided into four groups: CC (control control), CT (control treatment with baicalein), EC (embryonic heat control), and ET (embryonic heat treatment with baicalein), and were fed ad libitum. On day 10 post-hatch, blood and adipose tissue samples were collected for analysis. C/EBPα mRNA was lower in the ET group compared to the EC group and higher in the CT group compared to the CC group. PPARγ and HSL mRNAs were elevated in both the ET and CT groups relative to their controls. Additionally, plasma non-esterified fatty acid (NEFA) levels were significantly higher in the CT group compared to the CC group. These results indicate that baicalein supplementation, particularly when combined with embryonic heat conditioning, can modulate fat metabolism and potentially improve the growth performance of broilers, thereby offering insights into strategies for enhancing poultry production.
more »
« less
- Award ID(s):
- 2041923
- PAR ID:
- 10588337
- Publisher / Repository:
- Animals
- Date Published:
- Journal Name:
- Animals
- Volume:
- 14
- Issue:
- 24
- ISSN:
- 2076-2615
- Page Range / eLocation ID:
- 3563
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diet has been found to significantly influence gut microbiota throughout various life stages, and gut microbiota have been increasingly shown to influence host physiology, health, and behavior. This study uses 16S rRNA sequencing to examine the effects of six different fat-supplemented diets (canola oil, coconut oil, fish oil, flaxseed oil, lard, and olive oil) on broiler chicken cecal microbial composition and predicted function in comparison with a common and inexpensive fat source (poultry fat). Groups of broilers were fed each of these diets and then evaluated on day 41 and day 55 of age. For both 41- and 55-day samples,FirmicutesandBacteroidetesphyla were the dominant bacteria in the ceca accounting for 99% of the microbial community. Across the 41- and 55-day samples, treatment time was associated with a stronger and more significant microbiota shift (p < 0.001) than differences in dietary treatment alone (p = 0.117), but dietary treatment combined with treatment time is a significant factor as well (p = 0.047). Sparse partial least squares discriminant analysis was used to explore the more discriminating taxa for each treatment group. For identified species, butyrate production appears to be affected in a diet-specific manner, with many butyrate-producing species being evident for the fish-based diet at day 41 and a few of these species for the flaxseed-based diet at day 55. Predicted functions, as conducted with PICRUSt2, were significant for comparisons between the control and the flaxseed-based dietary treatment group at day 55, with indications of host health benefit for the flaxseed-based diet. Predicted functions found to be significant were for enzymes and pathways such as propionate CoA ligase, aminobutyraldehyde dehydrogenase, vitamin B12-transporting ATPase, thiamine kinase, acetylneuraminate epimerase, and L-tryptophan biosynthesis. This study provides insight surrounding specific dietary fat-based treatments to be investigated further and highlights the importance of polyunsaturated fat sources in poultry feed that may offer a favorable cecal microbial modulation compared to saturated fat sources.more » « less
-
Epigenetic modifiers (EM; methionine, choline, folate, and vitamin B 12 ) are important for early embryonic development due to their roles as methyl donors or cofactors in methylation reactions. Additionally, they are essential for the synthesis of nucleotides, polyamines, redox equivalents, and energy metabolites. Despite their importance, investigation into the supplementation of EM in ruminants has been limited to one or two epigenetic modifiers. Like all biochemical pathways, one-carbon metabolism needs to be stoichiometrically balanced. Thus, we investigated the effects of supplementing four EM encompassing the methionine–folate cycle on bovine embryonic fibroblast growth, mitochondrial function, and DNA methylation. We hypothesized that EM supplemented to embryonic fibroblasts cultured in divergent glucose media would increase mitochondrial respiration and cell growth rate and alter DNA methylation as reflected by changes in the gene expression of enzymes involved in methylation reactions, thereby improving the growth parameters beyond Control treated cells. Bovine embryonic fibroblast cells were cultured in Eagle’s minimum essential medium with 1 g/L glucose (Low) or 4.5 g/L glucose (High). The control medium contained no additional OCM, whereas the treated media contained supplemented EM at 2.5, 5, and 10 times (×2.5, ×5, and ×10, respectively) the control media, except for methionine (limited to ×2). Therefore, the experimental design was a 2 (levels of glucose) × 4 (levels of EM) factorial arrangement of treatments. Cells were passaged three times in their respective treatment media before analysis for growth rate, cell proliferation, mitochondrial respiration, transcript abundance of methionine–folate cycle enzymes, and DNA methylation by reduced-representation bisulfite sequencing. Total cell growth was greatest in High ×10 and mitochondrial maximal respiration, and reserve capacity was greatest ( p < 0.01) for High ×2.5 and ×10 compared with all other treatments. In Low cells, the total growth rate, mitochondrial maximal respiration, and reserve capacity increased quadratically to 2.5 and ×5 and decreased to control levels at ×10. The biological processes identified due to differential methylation included the positive regulation of GTPase activity, molecular function, protein modification processes, phosphorylation, and metabolic processes. These data are interpreted to imply that EM increased the growth rate and mitochondrial function beyond Control treated cells in both Low and High cells, which may be due to changes in the methylation of genes involved with growth and energy metabolism.more » « less
-
The purpose of this study is to investigate the combined impact of mask-wearing on cognitive performance and risk-taking behaviors. Participants were divided into a control group (N=24) without and an experimental group (N=27) with a surgical mask. Both groups completed the tasks in a warm environment (30 oC) where the conditions can reduce cognition and decision-making as well. These conditions are common in indoor spaces without sufficient air conditioning during a heat wave. Cognition and risk-taking behaviors were assessed using computerized tests. Results showed that mask-wearing in warm environment did not negatively impact cognitive performance, nor did it increase risk-taking behavior as the concept of risk compensation predicts, even when the CO2 concentration was elevated to approximately 29,000 ppm on average inside the mask. On the contrary, mask-wearing participants showed less risk-taking behaviors, slightly better response inhibition and better short-term memory. These results do not support previous findings suggesting that even a moderately increased indoor CO2 level can reduce cognition. We hypothesize that human adaptation effects (due to mask-wearing on a daily basis) make people less vulnerable to the adverse environment (i.e., excessive air temperature and CO2 levels), which will be investigated in the future studies.more » « less
-
AbstractRotator cuff tears are the most common upper extremity orthopaedic injury, causing degenerative changes within the bone, tendon, joint capsule, bursa and muscle. These degenerative changes are linked to poor rehabilitative and surgical outcomes, which has launched investigations into co‐therapeutic biologics. Specifically, mesenchymal stem cells (MSCs) have shown promise in mitigating degenerative changes in animal models of rotator cuff tears, but reports of their impact on clinical outcomes remain mixed. Here we describe an alternative source of MSCs in the human shoulder, adipose stromal cells (ASCs) from the subacromial fat (SAF) pad. Compared to the gold‐standard subcutaneous (SQ) fat, we show that SAF ASCs are less sensitive to chemical and mechanical fibrotic cues, (1) retaining smaller cell area with reduced actin stress fibre alignment across a range of physiological and pathological stiffnesses, (2) having reduced traction forces and extracellular matrix production, and (3) having reduced myofibroblastic conversion in response to cytokine challenge. Furthermore, we show that SAF ASCs enhance fusion of primary human myoblasts via paracrine signalling. Despite a fibrotic signature in SAF from rotator cuffs with tendon tears, SAF ASCs sourced from torn rotator cuffs were equally effective at resisting fibroblastic conversion and promoting myogenesis as those from intact rotator cuffs, further supporting autologous clinical use of these cells. In conclusion, this study describes human SAF ASCs as an alternative, and potentially superior, cell source for rotator cuff therapies.image Key pointsAdipose tissue within the rotator cuff is a novel and understudied source of therapeutic adipose stromal cells.Here, we detail the impact rotator cuff tears have on adipose tissue within the shoulder, its resident adipose stromal cells, and make a comparison of shoulder adipose stromal cells to subcutaneous adipose stromal cells.Rotator cuff tears cause fibrosis of rotator cuff adipose tissue; this fibrosis does not impact downstream adipose stromal cell morphology or pro‐myogenic signaling.Rotator cuff adipose stromal cells resist fibrotic microenvironmental cues and have enhanced pro‐myogenic paracrine signaling compared with traditional subcutaneous adipose stromal cells.Rotator cuff adipose stromal cells represent a new cell type that can be impactful in advancing rotator cuff therapies.more » « less
An official website of the United States government
