skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states
Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the `straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development.  more » « less
Award ID(s):
1231306
PAR ID:
10588353
Author(s) / Creator(s):
; ;
Publisher / Repository:
IUCrJ
Date Published:
Journal Name:
IUCrJ
Volume:
7
Issue:
2
ISSN:
2052-2525
Page Range / eLocation ID:
238 to 252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transglutaminase 2 (TG2) is a GTP-binding, protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that bind and stabilize the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotides bind and stabilize a monomeric closed conformation while calcium binds to an open state that can form higher order oligomers. SAXS analysis suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time resolved SAXS to show that LM11 increases the ability of calcium to bind and stabilize an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state. 
    more » « less
  2. Protein complex formation is a central problem in biology, being involved in most of the cell's processes, and essential for applications, e.g. drug design or protein engineering. We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures, assuming no conformational change within the proteins happens during binding. We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position relative to the second protein. We mathematically guarantee a basic principle: the predicted complex is always identical regardless of the initial locations and orientations of the two structures. Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment, achieved through optimal transport and a differentiable Kabsch algorithm. Empirically, we achieve significant running time improvements and often outperform existing docking software despite not relying on heavy candidate sampling, structure refinement, or templates. 
    more » « less
  3. Peptide-brush polymers generated by graft-through living polymerization of peptide-modified monomers exhibit high proteolytic stability, therapeutic efficacy, and potential as functional tandem repeat protein mimetics. Prior work has focused on polymers generated from structurally disordered peptides that lack defined conformations. To obtain insight into how the structure of these polymers is influenced by the folding of their peptide sidechains, a set of polymers with varying degrees of polymerization was prepared from peptide monomers that adopt α-helical secondary structure for comparison to those having random coil structures. Circular dichroism and nuclear magnetic resonance spectroscopy confirm the maintenance of the secondary structure of the constituent peptide when polymerized. Small-angle X-ray scattering (SAXS) studies reveal the solution-phase conformation of PLPs in different solvent environments. In particular, X-ray scattering shows that modulation of solvent hydrophobicity, as well as hydrogen bonding patterns of the peptide sidechain, plays an important role in the degree of globularity and conformation of the overall polymer, with polymers of helical peptide brushes showing less spherical compaction in conditions where greater helicity is observed. These structural insights into peptide brush folding and polymer conformation inform the design of these proteomimetic materials with promise for controlling and predicting their artificial fold and morphology 
    more » « less
  4. In this study, we investigate the influence of the Tyr5 and His6 substituent groups on the zinc-binding affinities and conformational properties of a series of acetylated heptapeptides, acetyl-His1-Cys2-Gly3-Pro4-X5-X6-Cys7 focusing on the impacts where X5-X6 are either Tyr5-Gly6, Tyr5-His6, Gly5-Gly6, or Gly5-His6. Utilizing traveling-wave ion mobility-mass spectrometry and molecular modeling techniques we analyze the zinc binding interactions and peptide coordination behavior. The zinc binding peptides (ZBPs) relative zinc affinities were measured across pH 5 to pH 10 by monitoring the solution-phase formation of the [ZBP+Zn(II)] complex by utilizing native MS in negative ion mode to preserve the solution-phase binding of Zn(II) to the peptides. Furthermore, their relative gas-phase Zn(II) affinities were measured using competitive threshold collision-induced dissociation (TCID) of the [ZBP+Zn(II)+NTA] complex, by modeling the two competing dissociation channels: [ZBP+Zn(II)]- + NTA or [Zn(II)+NTA] + ZBP, where NTA is nitrilotriacetic acid. Our examinations also tested whether there was an effect of the formation of the [ZBP+Zn(II)+NTA] complexes from solutions at different pHs, before they are electrosprayed into the gas-phase for the TCID analyses. Both solution- and gas-phase measurements predicted the heptapeptide with the Gly5-His6 residues had the greatest zinc affinity and that the presence of Tyr5 and His6 altered the zinc affinity and induced distinct conformational changes due to changes in the coordination of the zinc. This research enhances our understanding of zinc-peptide interactions, with implications for the design of peptide-based metalloproteins, which may guide the design of novel ZBPs for therapeutic, biotechnological or environmental remediation applications. 
    more » « less
  5. null (Ed.)
    Two new computational approaches are described to aid in the design of new peptide-based drugs by evaluating ensembles of protein structures from their dynamics and through the assessing of structures using empirical contact potential. These approaches build on the concept that conformational variability can aid in the binding process and, for disordered proteins, can even facilitate the binding of more diverse ligands. This latter consideration indicates that such a design process should be less restrictive so that multiple inhibitors might be effective. The example chosen here focuses on proteins/peptides that bind to hemagglutinin (HA) to block the large-scale conformational change for activation. Variability in the conformations is considered from sets of experimental structures, or as an alternative, from their simple computed dynamics; the set of designe peptides/small proteins from the David Baker lab designed to bind to hemagglutinin, is the large set considered and is assessed with the new empirical contact potentials. 
    more » « less