This content will become publicly available on February 26, 2026
                            
                            Style-Pro: Style-Guided Prompt Learning for Generalizable Vision-Language Models
                        
                    More Like this
- 
            null (Ed.)Browser extensions enhance the web experience and have seen great adoption from users in the past decade. At the same time, past research has shown that online trackers can use various techniques to infer the presence of installed extensions and abuse them to track users as well as uncover sensitive information about them. In this work we present a novel extension-fingerprinting vector showing how style modifications from browser extensions can be abused to identify installed extensions. We propose a pipeline that analyzes extensions both statically and dynamically and pinpoints their injected style sheets. Based on these, we craft a set of triggers that uniquely identify browser extensions from the context of the visited page. We analyzed 116K extensions from Chrome's Web Store and report that 6,645 of them inject style sheets on any website that users visit. Our pipeline has created triggers that uniquely identify 4,446 of these extensions, 1,074 (24%) of which could not be fingerprinted with previous techniques. Given the power of this new extension-fingerprinting vector, we propose specific countermeasures against style fingerprinting that have minimal impact on the overall user experience.more » « less
- 
            U.S. elections rely heavily on computers such as voter registration databases, electronic pollbooks, voting machines, scanners, tabulators, and results reporting websites. These introduce digital threats to election outcomes. Risk-limiting audits (RLAs) mitigate threats to some of these systems by manually inspecting random samples of ballot cards. RLAs have a large chance of correcting wrong outcomes (by conducting a full manual tabulation of a trustworthy record of the votes), but can save labor when reported outcomes are correct. This efficiency is eroded when sampling cannot be targeted to ballot cards that contain the contest(s) under audit. If the sample is drawn from all cast cards, then RLA sample sizes scale like the reciprocal of the fraction of ballot cards that contain the contest(s) under audit. That fraction shrinks as the number of cards per ballot grows (i.e., when elections contain more contests) and as the fraction of ballots that contain the contest decreases (i.e., when a smaller percentage of voters are eligible to vote in the contest). States that conduct RLAs of contests on multi-card ballots or RLAs of small contests can dramatically reduce sample sizes by using information about which ballot cards contain which contests—by keeping track of card-style data (CSD). For instance, CSD reduce the expected number of draws needed to audit a single countywide contest on a 4-card ballot by 75%. Similarly, CSD reduce the expected number of draws by 95% or more for an audit of two contests with the same margin on a 4-card ballot if one contest is on every ballot and the other is on 10% of ballots. In realistic examples, the savings can be several orders of magnitude.more » « less
- 
            Limited data availability is a challenging problem in the latent fingerprint domain. Synthetically generated fingerprints are vital for training data-hungry neural network-based algorithms. Conventional methods distort clean fingerprints to generate synthetic latent fingerprints. We propose a simple and effective approach using style transfer and image blending to synthesize realistic latent fingerprints. Our evaluation criteria and experiments demonstrate that the generated synthetic latent fingerprints preserve the identity information from the input contact- based fingerprints while possessing similar characteristics as real latent fingerprints. Additionally, we show that the generated fingerprints exhibit several qualities and styles, suggesting that the proposed method can generate multiple samples from a single fingerprint.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
