skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 10, 2025

Title: Structural and dynamical properties of nucleic acid hairpins implicated in trinucleotide repeat expansion diseases
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders—known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)—which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single- molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.  more » « less
Award ID(s):
2409309
PAR ID:
10588451
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Biomolecules
ISSN:
biom14101278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Trinucleotide repeats are common in the human genome and can undergo changes in repeat number and cause length-dependent chromosome fragility. Expanded CAG repeats have been linked to over 14 human diseases and are considered hotspots for breakage and genomic rearrangement. Here we describe two Saccharomyces cerevisiae based assays that evaluate the rate of chromosome breakage that occurs within a repeat tract (fragility), with variations that allow the role of transcription to be evaluated. The first fragility assay utilizes end-loss and subsequent telomere addition as the main mode of repair of a yeast artificial chromosome (YAC). The second fragility assay relies on the fact that a chromosomal break stimulates recombination-mediated repair. A PCR-based assay can be used to evaluate instability of the repeat in the same conditions used to measure repeat fragility. These assays have contributed to understanding the genetic mechanisms that cause chromosome breaks and tract-length changes at unstable trinucleotide repeats. 
    more » « less
  2. We report a thorough investigation of the role of single-stranded thymidine (ssT) linkers in the stability and flexibility of minimal, multistranded DNA nanostructures. We systematically explore the impact of varying the number of ssTs in three-way junction motifs (3WJs) on their formation and properties. Through various UV melting experiments and molecular dynamics simulations, we demonstrate that while the number of ssTs minimally affects thermodynamic stability, the increasing ssT regions significantly enhance the structural flexibility of 3WJs. Utilizing this knowledge, we design triangular DNA nanoparticles with varying ssTs, all showing exceptional assembly efficiency except for the 0T triangle. All triangles demonstrate enhanced stability in blood serum and are nonimmunostimulatory and nontoxic in mammalian cell lines. The 4T 3WJ is chosen as the building block for constructing other polygons due to its enhanced flexibility and favorable physicochemical characteristics, making it a versatile choice for creating cost-effective, stable, and functional DNA nanostructures that can be stored in the dehydrated forms while retaining their structures. Our study provides valuable insights into the design and application of nucleic acid nanostructures, emphasizing the importance of understanding stability and flexibility in the realm of nucleic acid nanotechnology. Our findings suggest the intricate connection between these ssTs and the structural adaptability of DNA 3WJs, paving the way for more precise design and engineering of nucleic acid nanosystems suitable for broad biomedical applications. 
    more » « less
  3. Roux, Simon (Ed.)
    ABSTRACT Nucleic acid secondary structures play important roles in regulating biological processes. StemLoop-Finder is a computational tool to recognize and annotate conserved structural motifs in large data sets. The program is optimized for the detection of stem-loop structures that may serve as origins of replication in circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses. 
    more » « less
  4. Abstract Upon sensing cytosolic- and/or viral double-stranded (ds)DNA, absent-in-melanoma-2 (AIM2)-like-receptors (ALRs) assemble into filamentous signaling platforms to initiate inflammatory responses. The versatile yet critical roles of ALRs in host innate defense are increasingly appreciated; however, the mechanisms by which AIM2 and its related IFI16 specifically recognize dsDNA over other nucleic acids remain poorly understood (i.e. single-stranded (ss)DNA, dsRNA, ssRNA and DNA:RNA hybrid). Here, we find that although AIM2 can interact with various nucleic acids, it preferentially binds to and assembles filaments faster on dsDNA in a duplex length-dependent manner. Moreover, AIM2 oligomers assembled on nucleic acids other than dsDNA not only display less ordered filamentous structures, but also fail to induce the polymerization of downstream ASC. Likewise, although showing broader nucleic acid selectivity than AIM2, IFI16 binds to and oligomerizes most readily on dsDNA in a duplex length-dependent manner. Nevertheless, IFI16 fails to form filaments on single-stranded nucleic acids and does not accelerate the polymerization of ASC regardless of bound nucleic acids. Together, we reveal that filament assembly is integral to nucleic acid distinction by ALRs. 
    more » « less
  5. Abstract H-DNA is an intramolecular DNA triplex formed by homopurine-homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure in vitro to discovering its existence and role in vivo. H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome. The foundational S1 nuclease and chemical probing technologies originally used to show H-DNA formation have been updated and combined with genome-wide sequencing methods for large-scale mapping of secondary structures. There is evidence for triplex H-DNA’s role in polycystic kidney disease, cancer, and numerous repeat expansion diseases. In polycystic kidney disease (PKD), an H-DNA forming repeat region within the PKD1 gene stalls DNA replication and induces fragility. H-DNA- forming repeats in various genes have a role in cancer; the most well-studied examples involve H-DNA-mediated fragility causing translocations in multiple lymphomas. Lastly, H-DNA-forming repeats have been implicated in four repeat expansion diseases: Friedreich's ataxia (FRDA), GAA-FGF14-related ataxia, X-linked Dystonia Parkinsonism (XDP), and cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS). In this review, we summarize H-DNA’s discovery and characterization, evidence for its existence and function in vivo, and the field's current knowledge on its role in physiology and pathology. 
    more » « less