Abstract Small heat shock proteins (sHSPs) are chaperones with well-characterized roles in heat stress, but potential roles for sHSPs in desiccation tolerance have not been as thoroughly explored. We identified nine sHSPs from the tardigradeHypsibius exemplaris, each containing a conserved alpha-crystallin domain flanked by disordered regions. Many of these sHSPs are highly expressed. Multiple tardigrade and human sHSPs could improve desiccation tolerance ofE. coli, suggesting that the capacity to contribute to desicco-protection is a conserved property of some sHSPs. Purification and subsequent analysis of two tardigrade sHSPs, HSP21 and HSP24.6, revealed that these proteins can oligomerize in vitro. These proteins limited heat-induced aggregation of the model enzyme citrate synthase. Heterologous expression of HSP24.6 improved bacterial heat shock survival, and the protein significantly reduced heat-induced aggregation of soluble bacterial protein. Thus, HSP24.6 likely chaperones against protein aggregation to promote heat tolerance. Furthermore, HSP21 and HSP24.6 limited desiccation-induced aggregation and loss of function of citrate synthase. This suggests a mechanism by which tardigrade sHSPs promote desiccation tolerance, by limiting desiccation-induced protein aggregation, thereby maintaining proteostasis and supporting survival. These results suggest that sHSPs provide a mechanism of general stress resistance that can also be deployed to support survival during anhydrobiosis.
more »
« less
This content will become publicly available on November 1, 2025
A bacterial expression cloning screen reveals single-stranded DNA-binding proteins as potent desicco-protectants
Desiccation kills most cells. Some proteins have been identified to help certain cells survive desiccation, but many protein protectants are likely to be unknown. Moreover, the mechanisms ensuring protection of key cellular components are incompletely understood. We devised an expression-cloning approach to discover further protectants. We expressed cDNA libraries from two species of tardigrades in E. coli, and we subjected the bacteria to desiccation to select for survivors. Sequencing the populations of surviving bacteria revealed enrichment of mitochondrial single-stranded DNA-binding proteins (mtSSBs) from both tardigrade species. Expression of mtSSBs in bacteria improved desiccation survival as strongly as the best tardigrade protectants known to date. We found that DNA-binding activity of mtSSBs was necessary and sufficient to improve the desiccation tolerance of bacteria. Although tardigrade mtSSBs were among the strongest protectants we found, single-stranded DNA binding proteins in general offered some protection. These results identify single-stranded DNA-binding proteins as potent desicco-protectants.
more »
« less
- Award ID(s):
- 2028860
- PAR ID:
- 10588491
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Cell Reports
- Volume:
- 43
- Issue:
- 11
- ISSN:
- 2211-1247
- Page Range / eLocation ID:
- 114956
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The antimicrobial activity and mechanism of silver ions (Ag + ) have gained broad attention in recent years. However, dynamic studies are rare in this field. Here, we report our measurement of the effects of Ag + ions on the dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy (sptPALM). It was found that treating the bacteria with Ag + ions led to faster diffusive dynamics of H-NS proteins. Several techniques were used to understand the mechanism of the observed faster dynamics. Electrophoretic mobility shift assay on purified H-NS proteins indicated that Ag + ions weaken the binding between H-NS proteins and DNA. Isothermal titration calorimetry confirmed that DNA and Ag + ions interact directly. Our recently developed sensing method based on bent DNA suggested that Ag + ions caused dehybridization of double-stranded DNA (i.e., dissociation into single strands). These evidences led us to a plausible mechanism for the observed faster dynamics of H-NS proteins in live bacteria when subjected to Ag + ions: Ag + -induced DNA dehybridization weakens the binding between H-NS proteins and DNA. This work highlighted the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria. IMPORTANCE As so-called “superbug” bacteria resistant to commonly prescribed antibiotics have become a global threat to public health in recent years, noble metals, such as silver, in various forms have been attracting broad attention due to their antimicrobial activities. However, most of the studies in the existing literature have relied on the traditional bioassays for studying the antimicrobial mechanism of silver; in addition, temporal resolution is largely missing for understanding the effects of silver on the molecular dynamics inside bacteria. Here, we report our study of the antimicrobial effect of silver ions at the nanoscale on the diffusive dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy. This work highlights the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.more » « less
-
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme—making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades’ ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.more » « less
-
Abstract BackgroundCells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematodeC. elegansas a model to study the endogenous function of an LEA protein in an animal. ResultsWe created a null mutant ofC. elegansLEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed thatC. eleganslacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs withinC. elegansLEA-1 that were sufficient to increase desiccation survival ofE. coli. To test whether such motifs are central to LEA-1’s in vivo functions, we then replaced the sequence oflea-1with these minimal motifs and found thatC. elegansdauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. ConclusionsOur results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.more » « less
-
Abstract Protein‐based biological drugs and many industrial enzymes are unstable, making them prohibitively expensive. Some can be stabilized by formulation with excipients, but most still require low temperature storage. In search of new, more robust excipients, we turned to the tardigrade, a microscopic animal that synthesizes cytosolic abundant heat soluble (CAHS) proteins to protect its cellular components during desiccation. We find that CAHS proteins protect the test enzymes lactate dehydrogenase and lipoprotein lipase against desiccation‐, freezing‐, and lyophilization‐induced deactivation. Our data also show that a variety of globular and disordered protein controls, with no known link to desiccation tolerance, protect our test enzymes. Protection of lactate dehydrogenase correlates, albeit imperfectly, with the charge density of the protein additive, suggesting an approach to tune protection by modifying charge. Our results support the potential use of CAHS proteins as stabilizing excipients in formulations and suggest that other proteins may have similar potential.more » « less