We develop a theoretical framework to quantify how active forces renormalize the effective bending rigidity, Gaussian modulus, and surface tension of thermally fluctuating membranes. Building on classical statistical mechanics, we extend the analysis to include nonequilibrium active forces, both direct forces and those coupled to membrane curvature, within a nonlinear continuum formulation. Our model also incorporates hydrodynamic interactions mediated by the surrounding viscous fluid, which significantly alter the fluctuation spectrum. We find that direct active forces enhance long-wavelength undulations, leading to a substantial reduction in both the effective bending rigidity and surface tension, with the extent of softening strongly modulated by fluid viscosity. In contrast, curvature-coupled active forces primarily influence intermediate and short-wavelength fluctuations and show minimal sensitivity to viscosity. Together, these findings provide key insights into the nonequilibrium mechanics of active membranes and yield testable predictions for interpreting fluctuation spectra in both biological contexts and engineered membrane systems.
more »
« less
This content will become publicly available on September 1, 2026
Entropic Pressure Between Fluctuating Membranes With Surface Tension
Entropic pressure, a longstanding topic of interest in biophysics and biomechanics, has been studied for over four decades. Similar to an ideal gas, fluctuating surfaces can generate entropic pressure through thermally driven motions. These thermal fluctuations impact a wide range of biological activities, including but not limited to vesicle fusion, cell adhesion, exocytocis, and endocytocis among many others. It has been proposed (and validated) by many researchers that the entropic pressure near a fluctuating confined fluid membrane without surface tension scales as p∝1/d3, where d is the confining distance, and this power law is size independent. In this article, we show that entropic pressure near a fluctuating fluid membrane could be strongly affected by the membrane’s size and surface tension. We show that while for membranes of size L=1μm and larger, the pressure is size independent, for smaller membranes, the pressure does indeed depend on the membrane’s size. Our findings also shows that the surface tension changes this scaling law and at larger distance makes the pressure decay exponentially. Our work provides insights into how surface tension enhances biological vesicles fusion by suppressing membrane fluctuations, and consequently, the repulsive entropic force, and impacts biomembranes interactions with external objects at the early stage of approaching.
more »
« less
- PAR ID:
- 10588700
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 92
- Issue:
- 9
- ISSN:
- 0021-8936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes.more » « less
-
Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes.more » « less
-
Biomolecular phase separation has emerged as an essential mechanism for cellular organization. How cells respond to environmental stimuli in a robust and sensitive manner to build functional condensates at the proper time and location is only starting to be understood. Recently, lipid membranes have been recognized as an important regulatory center for biomolecular condensation. However, how the interplay between the phase behaviors of cellular membranes and surface biopolymers may contribute to the regulation of surface condensation remains to be elucidated. Using simulations and a mean-field theoretical model, we show that two key factors are the membrane’s tendency to phase-separate and the surface polymer’s ability to reorganize local membrane composition. Surface condensate forms with high sensitivity and selectivity in response to features of biopolymer when positive co-operativity is established between coupled growth of the condensate and local lipid domains. This effect relating the degree of membrane–surface polymer co-operativity and condensate property regulation is shown to be robust by different ways of tuning the co-operativity, such as varying membrane protein obstacle concentration, lipid composition, and the affinity between lipid and polymer. The general physical principle emerged from the current analysis may have implications in other biological processes and beyond.more » « less
-
Membrane undulations play a vital role in many biological processes, including the regulation of membrane protein activity. The asymmetric lipid composition of most biological membranes complicates theoretical description of these bending fluctuations, yet experimental data that would inform any such a theory is scarce. Here, we used neutron spin-echo (NSE) spectroscopy to measure the bending fluctuations of large unilamellar vesicles (LUV) having an asymmetric transbilayer distribution of high- and low-melting lipids. The asymmetric vesicles were prepared using cyclodextrin-mediated lipid exchange, and were composed of an outer leaflet enriched in egg sphingomyelin (ESM) and an inner leaflet enriched in 1-palmitoyl-2-oleoyl-phosphoethanolamine (POPE), which have main transition temperatures of 37 °C and 25 °C, respectively. The overall membrane bending rigidity was measured at three temperatures: 15 °C, where both lipids are in a gel state; 45 °C, where both lipids are in a fluid state; and 30 °C, where there is gel-fluid co-existence. Remarkably, the dynamics for the fluid asymmetric LUVs (aLUVs) at 30 °C and 45 °C do not follow trends predicted by their symmetric counterparts. At 30 °C, compositional asymmetry suppressed the bending fluctuations, with the asymmetric bilayer exhibiting a larger bending modulus than that of symmetric bilayers corresponding to either the outer or inner leaflet. We conclude that the compositional asymmetry and leaflet coupling influence the internal dissipation within the bilayer and result in membrane properties that cannot be directly predicted from corresponding symmetric bilayers.more » « less
An official website of the United States government
