Abstract Elemental mercury (Hg0) formation from other mercury species in seawater results from photoreduction and microbial activity, leading to possible evasion from seawater to overlying air. Microbial conversion of monomethylmercury (MeHg) to Hg0in seawater remains unquantified. A rapid radioassay method was developed using gamma‐emitting203Hg as a tracer to evaluate Hg0production from Hg(II) and MeHg in the low pM range. Bacterioplankton assemblages in Atlantic surface seawater and Long Island Sound water were found to rapidly produce Hg0, with production rate constants being directly related to bacterial biomass and independent of dissolved Hg(II) and MeHg concentrations. About 32% of Hg(II) and 19% of MeHg were converted to Hg0in 4 d in Atlantic surface seawater containing low‐bacterial biomass, and in Long Island Sound water with higher bacterial biomass, 54% of Hg(II) and 8% of MeHg were transformed to Hg0. Decreasing temperatures from 24°C to 4°C reduced Hg0production rates cell−1from Hg(II) 3.3 times as much as from a MeHg source. Because Hg0production rates were linearly related to microbial biomass and temperature, and microbial mercuric reductase was detected in our field samples, we inferred that microbial metabolic activities and enzymatic reactions primarily govern Hg0formation in subsurface waters where light penetration is diminished.
more »
« less
This content will become publicly available on February 13, 2026
The effect of precipitation on gaseous oxidized and elemental mercury concentrations as quantified by two types of atmospheric mercury measurement systems
Atmospheric HgIIconcentrations at a given site are linearly related to the amount of HgIIlost from the atmosphere during precipitation. The slope from DCS measurement data (a) could be used to correct the older data which were biased low (b).
more »
« less
- PAR ID:
- 10588748
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Environmental Science: Atmospheres
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2634-3606
- Page Range / eLocation ID:
- 204 to 219
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0∕HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0∕HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0+HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30%). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80% of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.more » « less
-
Abstract Mercury (Hg) is a naturally occurring element that has been greatly enriched in the environment by human activities like mining and fossil fuel combustion. Despite commonalities in some carbon dioxide (CO2) and Hg emission sources, the implications of long‐range climate scenarios for anthropogenic Hg emissions have yet to be explored. Here, we present comprehensive projections of anthropogenic Hg emissions extending to the year 2300 and evaluate impacts on global atmospheric Hg deposition. Projections are based on four Shared Socioeconomic Pathways (SSPs) ranging from sustainable reductions in resource and energy intensity to rapid economic growth driven by abundant fossil fuel exploitation. There is a greater than two‐fold difference in cumulative anthropogenic Hg emissions between the lower‐bound (110 Gg) and upper‐bound (235 Gg) scenarios. Hg releases to land and water are approximately six times those of direct emissions to air (600–1,470 Gg). At their peak, anthropogenic Hg emissions reach 2,200–2,600 Mg a−1sometime between 2010 (baseline) and 2030, depending on the SSP scenario. Coal combustion is the largest determinant of differences in Hg emissions among scenarios. Decoupling of Hg and CO2emission sources occurs under low‐to mid‐range scenarios, though contributions from artisanal and small‐scale gold mining remain uncertain. Future Hg emissions may have lower gaseous elemental Hg (Hg0) and higher divalent Hg (HgII), resulting in a higher fraction of locally sourced Hg deposition. Projected reemissions of previously deposited anthropogenic Hg follow a similar temporal trajectory to primary emissions, amplifying the benefits of primary Hg emission reductions under the most stringent mitigation scenarios.more » « less
-
null (Ed.)We present a new chemical mechanism for Hg(0)/ Hg(I) / Hg(II) atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg(0) by Br atoms and OH radicals, with subsequent oxidation of Hg(I) by ozone and radicals, re-speciation of gaseous Hg(II) in aerosols and cloud droplets, and speciated Hg(II) photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg(0) concentrations and Hg(II) wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg(0) to Hg(II). Ozone is the principal Hg(I) oxidant, enabling the efficient oxidation of Hg(0) to Hg(II) by OH. BrHgOH and Hg(OH)2 are the initial Hg(II) products of Hg0 oxidation, re-speciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of Hg(II) to Hg(0) takes place largely through photolysis of aqueous Hg(II)-organic complexes. 71% of model Hg(II) deposition is to the oceans. Major mechanism uncertainties for atmospheric Hg chemistry modeling include the concentrations of Br atoms, the stability and reactions of Hg(I), and the speciation of Hg(II) in aerosols and clouds with implications for photoreduction.more » « less
-
null (Ed.)Monomethylmercury (CH 3 Hg) is a neurotoxic pollutant that biomagnifies in aquatic food webs. In sediments, the production of CH 3 Hg depends on the bacterial activity of mercury (Hg) methylating bacteria and the amount of bioavailable inorganic divalent mercury (Hg II ). Biotic and abiotic reduction of Hg II to elemental mercury (Hg 0 ) may limit the pool of Hg II available for methylation in sediments, and thus the amount of CH 3 Hg produced. Knowledge about the transformation of Hg II is therefore primordial to the understanding of the production of toxic and bioaccumulative CH 3 Hg. Here, we examined the reduction of Hg II by sulfidic minerals (FeS (s) and CdS (s) ) in the presence of dissolved iron and dissolved organic matter (DOM) using low, environmentally relevant concentrations of Hg and ratio of Hg II :FeS (s) . Our results show that the reduction of Hg II by Mackinawite (FeS (s) ) was lower (<15% of the Hg II was reduced after 24 h) than when Hg II was reacted with DOM or dissolved iron. We did not observe any formation of Hg 0 when Hg II was reacted with CdS (s) (experiments done under both acidic and basic conditions for up to four days). While reactions in solution were favorable under the experimental conditions, Hg was rapidly removed from solution by co-precipitation. Thermodynamic calculations suggest that in the presence of FeS (s) , reduction of the precipitated Hg II is surface catalyzed and likely involves S −II as the electron donor. The lack of reaction with CdS may be due to its stronger M-S bond relative to FeS, and the lower concentrations of sulfide in solution. We conclude that the reaction of Hg with FeS (s) proceeds via a different mechanism from that of Hg with DOM or dissolved iron, and that it is not a major environmental pathway for the formation of Hg 0 in anoxic environments.more » « less
An official website of the United States government
