skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Translucent Si Solar Cells Patterned with Pulsed Ultraviolet Laser Beam
We report an application of a pulsed ultraviolet (UV) laser (λ = 355 nm) in producing translucent Si solar cells. This process efficiently generates a densely packed microhole array on a fully fabricated Si P‐N junction solar cell in just a few minutes. Herein, prototype cells with a nominal microhole diameter of 23 μm with a spacing between 60 and 300 μm are fabricated. High‐resolution electron‐beam microscopy reveals that the UV laser beam introduces amorphized silicon oxide (SiOx) in proximity to the patterned microholes via localized heating in air. Quantitative photovoltaic (PV) analysis shows a decline in the open‐circuit voltage (Voc) and the fill factor (FF) of the cells with the increase in the microhole density, likely due to the P‐N junction damage during the laser beam irradiation. Despite the reduction inVocand FF, the solar cells retain a short‐circuit current density (Jsc) above 90% without post‐processing. The inherent microhole geometry associated with the laser beam profile allows multiple light scattering within the confined microhole structure, enhancing the translucency of the cells. While further development is required for optimization, these findings support the potential use of UV laser beams for fast and scalable production of translucent solar cells.  more » « less
Award ID(s):
2048152
PAR ID:
10588882
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Energy and Sustainability Research
Volume:
5
Issue:
11
ISSN:
2699-9412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering. 
    more » « less
  2. Bulk heterojunction polymer solar cells based on a novel combination of materials are fabricated using industry‐compliant conditions for large area manufacturing. The relatively low‐cost polymer PTQ10 is paired with the nonfullerene acceptor 4TIC‐4F. Devices are processed using a nonhalogenated solvent to comply with industrial usage in absence of any thermal treatment to minimize the energy footprint of the fabrication. No solvent additive is used. Adding the well‐known and low‐cost fullerene derivative PC61BM acceptor to this binary blend to form a ternary blend, the power conversion efficiency (PCE) is improved from 8.4% to 9.9% due to increased fill factor (FF) and open‐circuit voltage (VOC) while simultaneously improving the stability. The introduction of PC61BM is able to balance the hole–electron mobility in the ternary blends, which is favourable for high FF. This charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from grazing‐incidence wide‐angle X‐ray scattering (GIWAXS), atomic force microscopy (AFM), and surface energy analysis. In addition, the industrial figure of merit (i‐FOM) of this ternary blend is found to increase drastically upon addition of PC61BM due to an increased performance–stability–cost balance. 
    more » « less
  3. Abstract 2D‐on‐3D (2D/3D) perovskite heterostructures present a promising strategy to realize efficient and stable photovoltaics. However, their applicability in inverted solar cells is limited due to the quantum confinement of the 2D‐layer and solvent incompatibilities that disrupt the underlying 3D layer, hampering electron transport at the 2D/3D interface. Herein, solvent‐dependent formation dynamics and structural evolution of 2D/3D heterostructures are investigated via in situ X‐ray scattering. It is revealed that solvent interaction with the 3D surface determines the formation sequence and spatial distribution of quasi‐2D phases withn= 2–4. Isopropanol (IPA) reconstructs the perovskite into a PbI2‐rich surface, forming a strata with smallernfirst, followed by a thinner substratum of largern. In contrast, 2,2,2‐Trifluoroethanol (TFE) preserves the 3D surface, promoting the formation of uniformly distributed largerndomains first, and smallernlast. Leveraging these insights, Dion–Jacobson perovskites are used with superior charge transport properties and structural robustness to fabricate 2D/3D heterostructures dominated byn≥ 3 and engineer a favorable energy landscape for electron tunneling. Inverted solar cells based on 3‐Aminomethylpyridine and TFE achieve a champion efficiency of 23.60%, withVocand FF of 1.19 V and 84.5%, respectively, and superior stabilities witht94of 960 h under thermal stress. 
    more » « less
  4. Abstract Poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a popular hole transport material in perovskite solar cells (PSCs). However, the devices with PEDOT:PSS exhibit large open‐circuit voltage (Voc) loss and low efficiency, which is attributed to mismatched energy level alignment and the poor interface of PEDOT:PSS and perovskite. Here, three polymer analogues to polyaniline (PANI), PANI–carbazole (P1), PANI–phenoxazine (P2), and PANI–phenothiazine (P3) are designed with different energy levels to modify the interface between PEDOT:PSS and the perovskite layer and improve the device performance. The effects of the polymers on the device performance are demonstrated by evaluating the work function adjustment, perovskite growth control, and interface modification in MAPbI3‐based PSCs. Low bandgap Sn–Pb‐based PSCs are also fabricated to confirm the effects of the polymers. Three effects are evaluated through the comparison study of PEDOT:PSS‐based organic solar cells and MAPbI3 PSCs based on the PEDOT:PSS modified by P1, P2, and P3. The order of contribution for the three effects is work function adjustment > surface modification > perovskite growth control. MAPbI3 PSCs modified with P2 exhibit a highVocof 1.13 V and a high‐power conversion efficiency of 21.06%. This work provides the fundamental understanding of the interface passivation effects for PEDOT:PSS‐based optoelectronic devices. 
    more » « less
  5. Abstract Polymer nanocomposite coatings of solar photovoltaic cells that absorb solar ultraviolet (UV) radiation and convert it into visible and near-infrared (NIR) light can increase the operational lifetime and the energy efficiency of the cells. We report a polymer nanocomposite spectrum converting layer (SCL) made of colorless polyimide CORIN impregnated with the nanoparticles (NPs) of fluoride NaYF4doped with three-valent ions of Europium at a molar concentration of 60%. The NPs were the nanocrystals (179 ± 35 nm in size) in thermally stable hexagonal beta-phase. The visible-NIR photoluminescence quantum yield of the nano-powder was ∼69%. The SCLs were applied using the open-air multi-beam multi-target pulsed laser deposition method to silicon heterojunction (SHJ), copper-indium-gallium-selenide (CIGS), and inverted metamorphic multijunction (IMM) solar cells. The cells were exposed to UV radiation from a 365 nm light emitting diode. TheI–Vcharacteristics of the cells were measured with a solar simulator using AM0 filter. The proposed SCLs improved the UV stability of all three types of the cells: the power degradation of SHJs and IMMs cells was stopped or slightly reversed and the degradation rate of CIGSs decreased by ∼25%. The proposed SCLs have great commercial potential, especially for applications to space power. 
    more » « less