Greybox fuzzing and mutation testing are two popular but mostly independent fields of software testing research that have so far had limited overlap. Greybox fuzzing, generally geared towards searching for new bugs, predominantly uses code coverage for selecting inputs to save. Mutation testing is primarily used as a stronger alternative to code coverage in assessing the quality of regression tests; the idea is to evaluate tests for their ability to identify artificially injected faults in the target program. But what if we wanted to use greybox fuzzing to synthesize high-quality regression tests? In this paper, we develop and evaluate Mu2, a Java-based framework for incorporating mutation analysis in the greybox fuzzing loop, with the goal of producing a test-input corpus with a high mutation score. Mu2 makes use of a differential oracle for identifying inputs that exercise interesting program behavior without causing crashes. This paper describes several dynamic optimizations implemented in Mu2 to overcome the high cost of performing mutation analysis with every fuzzer-generated input. These optimizations introduce trade-offs in fuzzing throughput and mutation killing ability, which we evaluate empirically on five real-world Java benchmarks. Overall, variants of Mu2 are able to synthesize test-input corpora with a higher mutation score than state-of-the-art Java fuzzer Zest. 
                        more » 
                        « less   
                    This content will become publicly available on March 30, 2026
                            
                            Snowplow: Effective Kernel Fuzzing with a Learned White-box Test Mutator
                        
                    
    
            Kernel fuzzers rely heavily on program mutation to automatically generate new test programs based on existing ones. In particular, program mutation can alter the test's control and data flow inside the kernel by inserting new system calls, changing the values of call arguments, or performing other program mutations. However, due to the complexity of the kernel code and its user-space interface, finding the effective mutation that can lead to the desired outcome such as increasing the coverage and reaching a target code location is extremely difficult, even with the widespread use of manually-crafted heuristics. This work proposes Snowplow, a kernel fuzzer that uses a learned white-box test mutator to enhance test mutation. The core of Snowplow is an efficient machine learning model that can learn to predict promising mutations given the test program to mutate, its kernel code coverage, and the desired coverage. Snowplow is demonstrated on argument mutations of the kernel tests, and evaluated on recent Linux kernel releases. When fuzzing the kernels for 24 hours, Snowplow shows a significant speedup of discovering new coverage (4.8x~5.2x) and achieves higher overall coverage (7.0%~8.6%). In a 7-day fuzzing campaign, Snowplow discovers 86 previously-unknown crashes. Furthermore, the learned mutator is shown to accelerate directed kernel fuzzing by reaching 19 target code locations 8.5x faster and two additional locations that are missed by the state-of-the-art directed kernel fuzzer. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10588913
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400710797
- Page Range / eLocation ID:
- 1124 to 1138
- Format(s):
- Medium: X
- Location:
- Rotterdam Netherlands
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Compiler technologies in deep learning and domain-specific hardware acceleration are increasingly adopting extensible compiler frameworks such as Multi-Level Intermediate Representation (MLIR) to facilitate more efficient development. With MLIR, compiler developers can easily define their own custom IRs in the form of MLIR dialects. However, the diversity and rapid evolution of such custom IRs make it impractical to manually write a custom test generator for each dialect. To address this problem, we design a new test generator called SynthFuzz that combines grammar-based fuzzing with custom mutation synthesis. The key essence of SynthFuzz is two fold: (1) It automatically infers parameterized context-dependent custom mutations from existing test cases. (2) It then concretizes the mutation's content depending on the target context and reduces the chance of inserting invalid edits by performing k - ancestor and prefix/postfix matching. It obviates the need to manually define custom mutation operators for each dialect. We compare SynthFuzz to three baselines: Grammarinator-a grammar-based fuzzer without custom mutations, MLIRSmith-a custom test generator for MLIR core dialects, and NeuRI-a custom test generator for ML models with parameterization of tensor shapes. We conduct this comprehensive comparison on four different MLIR projects. Each project defines a new set of MLIR dialects where manually writing a custom test generator would take weeks of effort. Our evaluation shows that SynthFuzz on average improves MLIR dialect pair coverage by 1.75 ×, which increases branch coverage by 1.22 ×. Further, we show that our context dependent custom mutation increases the proportion of valid tests by up to 1.11 ×, indicating that SynthFuzz correctly concretizes its parameterized mutations with respect to the target context. Parameterization of the mutations reduces the fraction of tests violating the base MLIR constraints by 0.57 ×, increasing the time spent fuzzing dialect-specific code.more » « less
- 
            This paper focuses on fuzzing document software or precisely, software that processes document files (e.g., HTML, PDF, and DOCX). Document software typically requires highly-structured inputs, which general-purpose fuzzing cannot handle well. We propose two techniques to facilitate fuzzing on document software. First, we design an intermediate document representation (DIR) for document files. DIR describes a document file in an abstract way that is independent of the underlying format. Reusing common SDKs, a DIR document can be lowered into a desired format without a deep understanding of the format. Second, we propose multi-level mutations to operate directly on a DIR document, which can more thoroughly explore the searching space than existing single-level mutations. Combining these two techniques, we can reuse the same DIR-based generations and mutations to fuzz any document format, without separately handling the target format and re-engineering the generation/mutation components.To assess utility of our DIR-based fuzzing, we applied it to 6 PDF and 6 HTML applications (48-hour) demonstrated superior performance, outpacing general mutation-based fuzzing (AFL++), ML-based PDF fuzzing (Learn&Fuzz), and structure-aware mutation-based fuzzing ((NAUTILUS) by 33.87%, 127.74%, and 25.17% in code coverage, respectively. For HTML, it exceeded AFL++ and generation-based methods (FreeDom and Domato) by 28.8% and 14.02%.more » « less
- 
            The eBPF technology in the Linux kernel has been widely adopted for different applications, such as networking, tracing, and security, thanks to the programmability it provides. By allowing user-supplied eBPF programs to be executed directly in the kernel, it greatly increases the flexibility and efficiency of deploying customized logic. However, eBPF also introduces a new and wide attack surface: malicious eBPF programs may try to exploit the vulnerabilities in the eBPF subsystem in the kernel. Fuzzing is a promising technique to find such vulnerabilities. Unfortunately, our experiments with the stateof-the-art kernel fuzzer, Syzkaller, show that it cannot effectively fuzz the eBPF runtime, those components that are in charge of executing an eBPF program, for two reasons. First, the eBPF verifier (which is tasked with verifying the safety of eBPF programs) rejects many fuzzing inputs because (1) they do not comply with its required semantics or (2) they miss some dependencies, i.e., other syscalls that need to be issued before the program is loaded. Second, Syzkaller fails to attach and trigger the execution of eBPF programs most of the times. This paper introduces the BPF Runtime Fuzzer (BRF), a fuzzer that can satisfy the semantics and dependencies required by the verifier and the eBPF subsystem. Our experiments show, in 48-hour fuzzing sessions, BRF can successfully execute 8× more eBPF programs compared to Syzkaller (and 32× more programs compared to Buzzer, an eBPF fuzzer released recently from Google). Moreover, eBPF programs generated by BRF are much more expressive than Syzkaller’s. As a result, BRF achieves 101% higher code coverage. Finally, BRF has so far managed to find 6 vulnerabilities (2 of them have been assigned CVE numbers) in the eBPF runtime, proving its effectiveness.more » « less
- 
            WebGL is a set of standardized JavaScript APIs for GPU-accelerated graphics. Security of the WebGL interface is paramount because it exposes remote and unsandboxed access to the underlying graphics stack (including the native GL libraries and GPU drivers) in the host OS. Unfortunately, applying state-of-the-art fuzzing techniques to the WebGL interface for vulnerability discovery is challenging because of (1) its huge input state space, and (2) the infeasibility of collecting code coverage across concurrent processes, closed-source libraries, and device drivers in the kernel. Our fuzzing technique, GLeeFuzz, guides input mutation by error messages instead of code coverage. Our key observation is that browsers emit meaningful error messages to aid developers in debugging their WebGL programs. Error messages indicate which part of the input fails (e.g., incomplete arguments, invalid arguments, or unsatisfied dependencies between API calls). Leveraging error messages as feedback, the fuzzer effectively expands coverage by focusing mutation on erroneous parts of the input. We analyze Chrome’s WebGL implementation to identify the dependencies between error-emitting statements and rejected parts of the input, and use this information to guide input mutation. We evaluate our GLeeFuzz prototype on Chrome, Firefox, and Safari on diverse desktop and mobile OSes. We discovered 7 vulnerabilities, 4 in Chrome, 2 in Safari, and 1 in Firefox. The Chrome vulnerabilities allow a remote attacker to freeze the GPU and possibly execute remote code at the browser privilege.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
