The utility of seed addition to promote tree regeneration can be greatly limited by animals that consume seeds. Moreover, given that restoration often occurs in forests where invasive shrubs are abundant, and evidence that invasive shrubs can increase granivory, it is important to explore whether methods for reducing granivory work equally well in invaded and uninvaded habitats. We used a multi-site field experiment spanning 160 days to explore whether coating seeds of Prunus serotina with capsaicin extract leads to reduced granivory in habitats with or without invasive shrubs ( Rhamnus cathartica). Capsaicin-coated seeds were removed at a similar rate to uncoated seeds, but seeds in invaded plots had a 78.8% higher rate of removal compared to plots without invasive shrubs. Our findings suggest that managers seeking to encourage regeneration of native trees using direct seeding should consider invasive shrub removal as a top priority to limit the loss of seeds once sown.
more »
« less
This content will become publicly available on March 21, 2026
Promoting acorn survival using capsaicin seed coatings is strengthened by the removal of invasive shrubs
Promoting regeneration of native trees, likeQuercusspp., is a priority for land managers given the ecological and economic importance of oak woodlands. Although direct seeding may promote recruitment ofQuercusspp., the effectiveness of direct seeding may be greatly reduced in environments where the activity of granivorous rodents is high. Importantly, the activity of granivorous rodents may be highest in environments where oak restoration is most desired, such as habitats invaded by non‐native woody shrubs. Implementing chemical deterrents to granivory should promote direct seeding success; yet it is essential to understand if those deterrents are effective in challenging restoration situations (e.g. areas with dense invasive shrub cover). Moreover, it is important to determine whether chemicals that deter granivory have undesired effects on beneficial ecological interactions, such as animal‐mediated seed dispersal. We used multi‐field site experiments in shrub‐invaded and shrub‐cleared forest plots to compare the removal and dispersal ofQuercus rubraacorns with seed coats treated with a pepper‐based capsaicin extract versus acorns treated with control solutions (i.e. water and ethanol). Seed removal was quantified for 37 days, and seed survival and dispersal were quantified by relocating nail‐tagged acorns after 8 weeks. We found that capsaicin‐treated seeds had a significantly higher probability of survival compared to seeds treated with control solutions; the presence of the invasive shrubRhamnus catharticaincreased post‐dispersal seed consumption regardless of seed‐coat treatment; capsaicin did not affect acorn dispersal distance; and the concentration of capsaicin coatings on acorns declined over time in the field.
more »
« less
- Award ID(s):
- 2110031
- PAR ID:
- 10588984
- Publisher / Repository:
- Society for Ecological Restoration
- Date Published:
- Journal Name:
- Restoration Ecology
- ISSN:
- 1061-2971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite frequent occurrences of invasive rats (Rattusspp.) on islands, their known effects on forests are limited. Where invasive rats have been studied, they generally have significant negative impacts on native plants, birds, and other animals. This study aimed to determine invasive rat distribution and effects on native plant populations via short‐term seed removal trials in tropical rain forest habitats in the Luquillo Experimental Forest, Puerto Rico. To address the first objective, we used tracking tunnels (inked and baited cards inside tunnels enabling animal visitors’ footprints to be identified) placed on the ground and in the lower canopy within disturbed (treefall gaps, hurricane plots, stream edges) and undisturbed (continuous forest) habitats. We found that rats are present in all habitats tested. Secondly, we compared seed removal of four native tree species (Guarea guidonia,Buchenavia capitata, Tetragastris balsamifera,andPrestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same disturbed and undisturbed habitats. Trail cameras were used to identify animals responsible for seed contact and removal. Black rats (Rattus rattus) were responsible for 65.1% of the interactions with seeds, of which 28.6% were confirmed seed removals. Two plant species had significantly more seeds removed in disturbed (gaps) than undisturbed forest.Prestoea acuminatahad the lowest seed removal (9% in 10 days), whereas all other species had >30% removal. Black rats are likely influencing fates of seeds on the forest floor, and possibly forest community composition, through dispersal or predation. Further understanding of rat–plant interactions may be useful for formulating conservation strategies.more » « less
-
Understanding patterns of seed predation in tallgrass prairie restorations is vital because seed additions are often used by managers to increase diversity and promote native species. However, the success of seed additions depends on the extent of seed predation. It is not clear how seed predation varies through time and to what extent it is affected by various commonly used management techniques in grasslands (e.g. spring or fall prescribed burns, mowing). We examined how predation ofSorghastrum nutansseeds changed during eight trials between June 2018 and April 2019 in plots that received one of four different plant litter removal treatments (fall mow, fall burn, spring burn, and unaltered control). Granivory varied throughout the year, reaching its peak in the late fall and early winter. However, we found that seed predators consumed significantly fewer seeds when litter was removed following fall burn and fall mow treatment applications. These treatments occurred during times when granivory was otherwise high in areas where litter remained intact (control and spring burn plots). Our findings highlight the importance of management decisions and how they interact with granivory in grassland restorations. Both time of year and litter cover determine seed predation rates; seed predators consume more seeds when seeds are abundant but rely on intact litter cover while foraging. This suggests that if seeds are added during the fall, litter should be removed to minimize the loss of seeds to granivory. Alternatively, seed additions during the spring are likely to experience lower rates of seed predation.more » « less
-
Losses of grasslands have been largely attributed to widespread land‐use changes, such as conversion to row‐crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non‐native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non‐native plants. In addition to the direct and indirect effects of non‐native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam‐pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non‐native invasiveBothriochloa bladhii(Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30%B. bladhiicover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non‐native species.more » « less
-
Abstract The enemy release hypothesis (ERH) of plant invasion asserts that natural enemies limit populations of invasive plants more strongly in native ranges than in non‐native ranges. Despite considerable empirical attention, few studies have directly tested this idea, especially with respect to generalist herbivores. This knowledge gap is important because escaping the effects of generalists is a critical aspect of the ERH that may help explain successful plant invasions. Here, we used consumer exclosures and seed addition experiments to contrast the effects of granivorous rodents (an important guild of generalists) on the establishment of cheatgrass (Bromus tectorum) in western Asia, where cheatgrass is native, versus the Great Basin Desert, USA, where cheatgrass is exotic and highly invasive. Consistent with the ERH, rodent foraging reduced cheatgrass establishment by nearly 60% in western Asia but had no effect in the Great Basin. This main result corresponded with a region‐specific foraging pattern: rodents in the Great Basin but not western Asia generally avoided seeds from cheatgrass relative to seeds from native competitors. Our results suggest that enemy release from the effects of an important guild of generalists may contribute to the explosive success of cheatgrass in the Great Basin. These findings corroborate classic theory on enemy release and expand our understanding of how generalists can influence the trajectory of exotic plant invasions.more » « less