The last decade has witnessed a surge of interest in applying deep learning models for discovering sequential patterns from a large volume of data. Recent works show that deep learning models can be further improved by enforcing models to learn a smooth output distribution around each data point. This can be achieved by augmenting training data with slight perturbations that are designed to alter model outputs. Such adversarial training approaches have shown much success in improving the generalization performance of deep learning models on static data, e.g., transaction data or image data captured on a single snapshot. However, when applied to sequential data, the standard adversarial training approaches cannot fully capture the discriminative structure of a sequence. This is because real-world sequential data are often collected over a long period of time and may include much irrelevant information to the classification task. To this end, we develop a novel adversarial training approach for sequential data classification by investigating when and how to perturb a sequence for an effective data augmentation. Finally, we demonstrate the superiority of the proposed method over baselines in a diversity of real-world sequential datasets. 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            Adversarial training and attribution methods enable evaluation of robustness and interpretability of deep learning models for image classification
                        
                    
    
            Deep learning models have achieved high performance in a wide range of applications. Recently, however, there have been increasing concerns about the fragility of many of those models to adversarial approaches and out-of-distribution inputs. A way to investigate and potentially address model fragility is to develop the ability to provide interpretability to model predictions. To this end, input attribution approaches such as Grad-CAM and integrated gradients have been introduced to address model interpretability. Here, we combine adversarial and input attribution approaches in order to achieve two goals. The first is to investigate the impact of adversarial approaches on input attribution. The second is to benchmark competing input attribution approaches. In the context of the image classification task, we find that models trained with adversarial approaches yield dramatically different input attribution matrices from those obtained using standard techniques for all considered input attribution approaches. Additionally, by evaluating the signal-(typical input attribution of the foreground)-to-noise (typical input attribution of the background) ratio and correlating it to model confidence, we are able to identify the most reliable input attribution approaches and demonstrate that adversarial training does increase prediction robustness. Our approach can be easily extended to contexts other than the image classification task and enables users to increase their confidence in the reliability of deep learning models. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2410335
- PAR ID:
- 10588985
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review E
- Volume:
- 110
- Issue:
- 5
- ISSN:
- 2470-0045
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Plant disease is one of many obstacles encountered in the field of agriculture. Machine learning models have been used to classify and detect diseases among plants by analyzing and extracting features from plant images. However, a common problem for many models is that they are trained on clean laboratory images and do not exemplify real conditions where noise can be present. In addition, the emergence of adversarial noise that can mislead models into wrong predictions poses a severe challenge to developing preserved models against noisy environments. In this paper, we propose an end-to-end robust plant disease detection framework that combines a DenseNet-based classification with a vigorous deep learning denoising model. We validate a variety of deep learning denoising models and adopt the Real Image Denoising network (RIDnet). The experiments have shown that the proposed denoising classification framework for plant disease detection is more robust against noisy or corrupted input images compared to a single classification model and can also successfully defend against adversarial noises in images.more » « less
- 
            Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically target and exploit the neural networking structures in their designs. This understanding led us to develop a hypothesis that most classical machine learning models, such as random forest (RF), are immune to adversarial attack models because they do not rely on neural network design at all. Our experimental study of classical machine learning models against popular adversarial attacks supports this hypothesis. Based on this hypothesis, we propose a new adversarial-aware deep learning system by using a classical machine learning model as the secondary verification system to complement the primary deep learning model in image classification. Although the secondary classical machine learning model has less accurate output, it is only used for verification purposes, which does not impact the output accuracy of the primary deep learning model, and, at the same time, can effectively detect an adversarial attack when a clear mismatch occurs. Our experiments based on the CIFAR-100 dataset show that our proposed approach outperforms current state-of-the-art adversarial defense systems.more » « less
- 
            Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)Recent work has found that adversarially-robust deep networks used for image classification are more interpretable: their feature attributions tend to be sharper, and are more concentrated on the objects associated with the image’s ground- truth class. We show that smooth decision boundaries play an important role in this enhanced interpretability, as the model’s input gradients around data points will more closely align with boundaries’ normal vectors when they are smooth. Thus, because robust models have smoother boundaries, the results of gradient- based attribution methods, like Integrated Gradients and DeepLift, will capture more accurate information about nearby decision boundaries. This understanding of robust interpretability leads to our second contribution: boundary attributions, which aggregate information about the normal vectors of local decision bound- aries to explain a classification outcome. We show that by leveraging the key fac- tors underpinning robust interpretability, boundary attributions produce sharper, more concentrated visual explanations{—}even on non-robust models.more » « less
- 
            The deep neural network (DNN) model for computer vision tasks (object detection and classification) is widely used in autonomous vehicles, such as driverless cars and unmanned aerial vehicles. However, DNN models are shown to be vulnerable to adversarial image perturbations. The generation of adversarial examples against inferences of DNNs has been actively studied recently. The generation typically relies on optimizations taking an entire image frame as the decision variable. Hence, given a new image, the computationally expensive optimization needs to start over as there is no learning between the independent optimizations. Very few approaches have been developed for attacking online image streams while taking into account the underlying physical dynamics of autonomous vehicles, their mission, and the environment. The article presents a multi-level reinforcement learning framework that can effectively generate adversarial perturbations to misguide autonomous vehicles’ missions. In the existing image attack methods against autonomous vehicles, optimization steps are repeated for every image frame. This framework removes the need for fully converged optimization at every frame. Using multi-level reinforcement learning, we integrate a state estimator and a generative adversarial network that generates the adversarial perturbations. Due to the reinforcement learning agent consisting of state estimator, actor, and critic that only uses image streams, the proposed framework can misguide the vehicle to increase the adversary’s reward without knowing the states of the vehicle and the environment. Simulation studies and a robot demonstration are provided to validate the proposed framework’s performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
