Locally resonant elastodynamic metasurfaces for suppressing surface waves have gained popularity in recent years, especially because of their potential in low-frequency applications such as seismic barriers. Their design strategy typically involves tailoring geometrical features of local resonators to attain a desired frequency bandgap through extensive dispersion analyses. In this paper, a systematic design methodology is presented to conceive these local resonators using topology optimization, where frequency bandgaps develop by matching multiple antiresonances with predefined target frequencies. The design approach modifies an individual resonator's response to unidirectional harmonic excitations in the in-plane and out-of-plane directions, mimicking the elliptical motion of surface waves. Once an arrangement of optimized resonators composes a locally resonant metasurface, frequency bandgaps appear around the designed antiresonance frequencies. Numerical investigations analyze three case studies, showing that longitudinal-like and flexural-like antiresonances lead to nonoverlapping bandgaps unless both antiresonance modes are combined to generate a single and wider bandgap. Experimental data demonstrate good agreement with the numerical results, validating the proposed design methodology as an effective tool to realize locally resonant metasurfaces by matching multiple antiresonances such that bandgaps generated as a result of in-plane and out-of-plane surface wave motion combine into wider bandgaps.
more »
« less
Design of resonant elastodynamic metasurfaces to control S Lamb waves using topology optimization
Control of guided waves has applications across length scales ranging from surface acoustic wave devices to seismic barriers. Resonant elastodynamic metasurfaces present attractive means of guided wave control by generating frequency stop-bandgaps using local resonators. This work addresses the systematic design of these resonators using a density-based topology optimization formulated as an eigenfrequency matching problem that tailors antiresonance eigenfrequencies. The effectiveness of our systematic design methodology is presented in a case study, where topologically optimized resonators are shown to prevent the propagation of the S0 wave mode in an aluminum plate.
more »
« less
- Award ID(s):
- 1934527
- PAR ID:
- 10589276
- Publisher / Repository:
- Acoustical Society of America (ASA)
- Date Published:
- Journal Name:
- JASA Express Letters
- Volume:
- 2
- Issue:
- 11
- ISSN:
- 2691-1191
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A locally resonant meta-surface for preferential excitation of a guided mode in a hollow pipe can improve ultrasonic guided wave inspection of pipelines. The proposed meta-surface comprises a periodic arrangement of bonded prismatic rod-like resonators in the circumferential and axial directions of the pipe. We demonstrate the presence of bandgaps for the low-frequency axisymmetric longitudinal modes L(0,1) and L(0,2) and the torsional mode T(0,1). The generated bandgaps can be used to filter the higher harmonics associated with the system nonlinearity to improve nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the non-axisymmetric flexural modes but with their hybridized dispersion curves exhibiting mode-coupling for higher circumferential orders. Moreover, a “partial” bandgap is obtained where preferential transmission of the L(0,2) mode over L(0,1) is possible. We discuss the potential advantages of this partial bandgap to improve pipeline inspections using the L(0,2) mode. Time-domain finite element analyses are used to validate the presence of these bandgaps under radial, circumferential, and axial excitation that mimics the excitation using a ring of piezoelectric transducers. Finally, we discuss the influence of resonator spacing, filling fraction, and the number of resonator rings on the bandgaps for an informed meta-surface design.more » « less
-
null (Ed.)Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface.more » « less
-
During the past decade, metasurfaces have shown great potential to complement standard optics, providing novel pathways to control the phase, amplitude, and polarization of electromagnetic waves utilizing arrays of subwavelength resonators. We present dynamic surface wave (SW) switching at terahertz frequencies utilizing a mechanically reconfigurable metasurface. Our metasurface is based on a microelectromechanical system (MEMS) consisting of an array of micro-cantilever structures, enabling dynamic tuning between a plane wave (PW) and a SW for normal incidence terahertz radiation. This is realized using line-by-line voltage control of the cantilever displacements to achieve full-span ( ) phase control. Full-wave electromagnetic simulations and terahertz time-domain spectroscopy agree with coupled mode theory, which was employed to design the metasurface device. A conversion efficiency of nearly 60% has been achieved upon switching between the PW and SW configurations. Moreover, a nearly 100 GHz working bandwidth is demonstrated. The MEMS-based control modality we demonstrate can be used for numerous applications, including but not limited to terahertz multifunctional metasurface devices for spatial light modulation, dynamic beam steering, focusing, and beam combining, which are crucial for future “beyond 5G” communication systems.more » « less
-
There is a trade-off between the sparseness of an absorber array and its sound absorption imposed by wave physics. Here, near-perfect absorption (99% absorption) is demonstrated when the spatial period of monopole-dipole resonators is close to one working wavelength (95% of the wavelength). The condition for perfect absorption is to render degenerate monopole-dipole resonators critically coupled. Frequency domain simulations, eigenfrequency simulations, and the coupled mode theory are utilized to demonstrate the acoustic performances and the underlying physics. The sparse-resonator-based sound absorber could greatly benefit noise control with air flow and this study could also have implications for electromagnetic wave absorbers.more » « less