skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Afterglows from Binary Neutron Star Postmerger Systems Embedded in Active Galactic Nuclei Disks
Abstract The observability of afterglows from binary neutron star mergers occurring within active galactic nuclei (AGN) disks is investigated. We perform 3D GRMHD simulations of a postmerger system and follow the jet launched from the compact object. We use semianalytic techniques to study the propagation of the blast wave powered by the jet through an AGN disk-like external environment, extending to distances beyond the disk scale height. The synchrotron emission produced by the jet-driven forward shock is calculated to obtain the afterglow emission. The observability of this emission at different frequencies is assessed by comparing it to the quiescent AGN emission. In the scenarios where the afterglow could temporarily outshine the AGN, we find that detection will be more feasible at higher frequencies (≳1014Hz) and the electromagnetic counterpart could manifest as a fast variability in the AGN emission, on timescales less than a day.  more » « less
Award ID(s):
2107839
PAR ID:
10589504
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented. 
    more » « less
  2. ABSTRACT GW170817/GRB170817A has offered unprecedented insight into binary neutron star post-merger systems. Its Prompt and afterglow emission imply the presence of a tightly collimated relativistic jet with a smooth transverse structure. However, it remains unclear whether and how the central engine can produce such structured jets. Here, we utilize 3D general relativistic magnetohydrodynamic simulations starting with a black hole surrounded by a magnetized torus with properties typically expected of a post-merger system. We follow the jet, as it is self-consistently launched, from the scale of the compact object out to more than three orders of magnitude in distance. We find that this naturally results in a structured jet, which is collimated by the disc wind into a half-opening angle of roughly 10°; its emission can explain features of both the prompt and afterglow emission of GRB170817A for a 30° observing angle. Our work is the first to compute the afterglow, in the context of a binary merger, from a relativistic magnetized jet self-consistently generated by an accreting black hole, with the jet’s transverse structure determined by the accretion physics and not prescribed at any point. 
    more » « less
  3. With the discovery of gravitational waves (GWs), the disks of Active Galactic Nuclei (AGN) have emerged as an interesting environment for hosting a fraction of their sources. AGN disks are conducive to forming both long and short Gamma-Ray Bursts (GRBs), and their anticipated cosmological occurrence within these disks has potential to serve as an independent tool for probing and calibrating the population of stars and compact objects within them, and their contribution to the GW-detected population. In this study, we employ Monte Carlo methods in conjunction with models for GRB electromagnetic emission in extremely dense media to simulate the cosmological occurrence of both long and short GRBs within AGN disks, while also estimating their detectability across a range of wavelengths, from gamma-rays to radio frequencies. {We investigate two extreme scenarios: “undiffused”, in which the radiation escapes without significant scattering (i.e. if the progenitor has excavated a funnel within the disk), and “diffused”, in which the radiation is propagated through the high-density medium, potentially scattered and absorbed. {In the diffused case,} we find that the majority of detectable GRBs are likely to originate from relatively low redshifts, and from the outermost regions of large supermassive black hole (SMBH) masses, . In the undiffused case, we expect a similar trend, but with a considerable contribution from the intermediate regions of lower SMBH masses. Detectable emission is generally expected to be dominant in prompt γ -rays if diffusion is not dominant, and X-ray afterglow if diffusion is important; however, the nature of the dominant observable signal highly depends on the specific AGN disk model, hence making GRBs in AGN disks also potential probes of the structure of the disks themselves. 
    more » « less
  4. Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. 
    more » « less
  5. ABSTRACT Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultrarelativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first spectroscopically confirmed afterglow with no observed high-energy emission to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising ($$t \approx 2$$ h), luminous ($$M_{\rm UV,peak} \approx -24.4$$ mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing constraining limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of $$\Gamma _0 \approx$$ 10–30 for the on-axis material, significantly lower than in any well-observed GRB and consistent with the theoretically predicted ‘dirty fireball’ scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-$$\Gamma$$, off-axis from a classical high-$$\Gamma$$ jet core, and an on-axis GRB with below-average gamma-ray efficiency also remains a possibility. This event represents a milestone in orphan afterglow searches, demonstrating that luminous optical afterglows lacking detected GRB counterparts can be identified and spectroscopically confirmed in real time. 
    more » « less