skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diverse roles of ethylene in maize growth and development, and its importance in shaping plant architecture
Abstract The gaseous plant hormone ethylene is a key developmental and growth regulator, and a pivotal endogenous response signal to abiotic and biotic interactions, including stress. Much of what is known about ethylene biosynthesis, perception, and signaling comes from decades of research primarily in Arabidopsis thaliana and other eudicot model systems. In contrast, detailed knowledge on the ethylene pathway and response to the hormone is markedly limited in maize (Zea mays L.), a global cereal crop that is a major source of calories for humans and livestock, as well as a key industrial biofeedstock. Recent reports of forward screens and targeted reverse genetics have provided important insight into conserved and unique differences of the ethylene pathway and downstream responses. Natural and edited allelic variation in the promoter regions and coding sequences of ethylene biosynthesis and signaling genes alters maize shoot and root architectures, and plays a crucial role in biomass and grain yields. This review discusses recent advances in ethylene research in maize, with an emphasis on the role of ethylene in regulating growth and development of the shoot and root systems, and ultimately how this crucial hormone impacts plant architecture and grain yield.  more » « less
Award ID(s):
2126144
PAR ID:
10589515
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
Volume:
76
Issue:
7
ISSN:
0022-0957
Format(s):
Medium: X Size: p. 1854-1865
Size(s):
p. 1854-1865
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Protein‐protein interactions play a crucial role in driving cellular processes and enabling appropriate physiological responses in organisms. The plant hormone ethylene signaling pathway is complex and regulated by the spatiotemporal regulation of its signaling molecules. Constitutive Triple Response 1 (CTR1), a key negative regulator of the pathway, regulates the function of Ethylene‐Insensitive 2 (EIN2), a positive regulator of ethylene signaling, at the endoplasmic reticulum (ER) through phosphorylation. Our recent study revealed that CTR1 can also translocate from the ER to the nucleus in response to ethylene and positively regulate ethylene responses by stabilizing EIN3. To gain further insights into the role of CTR1 in plants, we used TurboID‐based proximity labeling and mass spectrometry to identify the proximal proteomes of CTR1 inNicotiana benthamiana. The identified proximal proteins include known ethylene signaling components, as well as proteins involved in diverse cellular processes such as mitochondrial respiration, mRNA metabolism, and organelle biogenesis. Our study demonstrates the feasibility of proximity labeling using theN. benthamianatransient expression system and identifies the potential interactors of CTR1 in vivo, uncovering the potential roles of CTR1 in a wide range of cellular processes. 
    more » « less
  2. Abstract Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf‐like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER‐to‐nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system‐level regulatory mechanisms that collectively fine‐tune ethylene responses to optimize plant growth, development, and stress adaptation. 
    more » « less
  3. Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene insensitive2 (EIN2); and transcription factors such as EIN3, EIN3-Like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications. 
    more » « less
  4. Salicylic acid (SA) is an important plant hormone with a critical role in plant defense against pathogen infection. Despite extensive research over the past 30 year or so, SA biosynthesis and its complex roles in plant defense are still not fully understood. Even though earlier biochemical studies suggested that plants synthesize SA from cinnamate produced by phenylalanine ammonia lyase (PAL), genetic analysis has indicated that in Arabidopsis, the bulk of SA is synthesized from isochorismate (IC) produced by IC synthase (ICS). Recent studies have further established the enzymes responsible for the conversion of IC to SA in Arabidopsis. However, it remains unclear whether other plants also rely on the ICS pathway for SA biosynthesis. SA induces defense genes against biotrophic pathogens, but represses genes involved in growth for balancing defense and growth to a great extent through crosstalk with the growth-promoting plant hormone auxin. Important progress has been made recently in understanding how SA attenuates plant growth by regulating the biosynthesis, transport, and signaling of auxin. In this review, we summarize recent progress in the biosynthesis and the broad roles of SA in regulating plant growth during defense responses. Further understanding of SA production and its regulation of both defense and growth will be critical for developing better knowledge to improve the disease resistance and fitness of crops. 
    more » « less
  5. Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for helical root tip movement known as circumnutation. Here, we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the geneOryza sativahistidine kinase-1 (HK1) as well as the auxin influx carrier geneOsAUX1as essential regulators of this process in rice. Robophysical modeling and growth challenge experiments indicate circumnutation is critical for seedling establishment in rocky soil, consistent with the long-standing hypothesis that root circumnutation facilitates growth past obstacles. Thus, the integration of robotics, physics, and biology has elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation. 
    more » « less