skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnetic Fabrics in Laminated Rocks of the Ilímaussaq Igneous Complex, Southern Greenland
Abstract Nepheline syenites from the ∼1.2 Ga Ilímaussaq Complex of southern Greenland are examined to assess the utility of anisotropy of magnetic susceptibility (AMS) fabrics as proxies for silicate petrofabrics. Mineral lamination is a relatively common structural feature in cumulate rocks, including in the Ilímaussaq intrusion, but there is little consensus on the process (or processes) responsible for its formation. The Ilímaussaq AMS data are combined with rock magnetic experiments and electron backscatter diffraction (EBSD) measurements to characterize the magnetic mineralogy and compare the magnetic fabrics obtained to the silicate petrofabric. The data show that Na-amphibole (arfvedsonite) is most likely the dominant control on the AMS fabrics in the coarse-grained nepheline syenites (referred to as kakortokites), and that the AMS fabric is inverse relative to the observed silicate fabric. The EBSD data for a kakortokite sample suggests that the petrofabric is defined by arfvedsonite and is wholly planar, with evidence of only weak cross-lineation of c axes. The fine-grained nepheline syenites (lujavrites), two of which have a well-developed lamination carried by Na-pyroxene (aegirine), appear to have composite AMS fabrics that are considered to be a consequence of a mixed aegirine (normal) and arfvedsonite (inverse) response. The combined datasets shed light on the mechanisms of fabric acquisition in both lithologies. In the kakortokites, the AMS fabrics and silicate crystallographic preferred orientations, as well as the lack of observed microstructural evidence for subsolidus intra-crystal deformation, support models invoking gravitationally controlled crystal mats in the development of the macro-rhythmic layering of these rocks. In the lujavrites, the strong planar fabrics revealed by both the AMS and EBSD datasets, with some evidence of subsolidus deformation, point to fabric formation and perhaps even aegirine crystallization at the postcumulus stage. The combination of EBSD and AMS fabric datasets is a powerful means of deciphering the processes responsible for mineral alignment in igneous cumulates.  more » « less
Award ID(s):
2122108
PAR ID:
10589553
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
GeoScienceWorld
Date Published:
Journal Name:
The Canadian Journal of Mineralogy and Petrology
Volume:
62
Issue:
6
ISSN:
2817-1713
Page Range / eLocation ID:
821 to 846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY Exsolved iron oxides in silicate minerals can be nearly ideal palaeomagnetic recorders, due to their single-domain-like behaviour and the protection from chemical alteration by their surrounding silicate host. Because their geometry is crystallographically controlled by the host silicate, these exsolutions possess a shape preferred orientation that is ultimately controlled by the mineral fabric of the silicates. This leads to potentially significant anisotropic acquisition of remanence, which necessitates correction to make accurate interpretations in palaeodirectional and palaeointensity studies. Here, we investigate the magnetic shape anisotropy carried by magnetite exsolutions in pyroxene single crystals, and in pyroxene-bearing rocks based on torque measurements and rotational hysteresis data. Image analysis is used to characterize the orientation distribution of oxides, from which the observed anisotropy can be modelled. Both the high-field torque signal and corresponding models contain components of higher order, which cannot be accurately described by second-order tensors usually used to describe magnetic fabrics. Conversely, low-field anisotropy data do not show this complexity and can be adequately described with second-order tensors. Hence, magnetic anisotropy of silicate-hosted exsolutions is field-dependent and this should be taken into account when interpreting isolated ferromagnetic fabrics, and in anisotropy corrections. 
    more » « less
  2. Abstract Sedimentary rocks of the Itararé Group, deposited during the Late Paleozoic Ice Age in the Paraná Basin of South America, were collected throughout the state of São Paulo, Brazil, for an anisotropy of magnetic susceptibility (AMS) and rock‐magnetic study. A recent paleomagnetic study conducted on the same samples had determined that these rocks were largely remagnetized during the Cretaceous; however, rock‐magnetic experiments demonstrate that the AMS is dominantly carried by paramagnetic minerals and therefore is unaffected by the secondary magnetic overprints. AMS data are analyzed in terms of their shape and orientation, and according to the relationship between theq‐value (magnetic lineation/foliation) and the imbrication angle (β) of the minimum susceptibility axes with respect to bedding (q–βdiagram). Using multiple lines of evidence, we demonstrate that AMS records primary sedimentary fabrics that reflect the depositional environments and paleocurrent conditions in which these rocks were deposited. The magnetic fabrics consistently record a SE‐NW paleocurrent orientation, with dominant direction of transport to the NW throughout the entire state of São Paulo, in agreement with ice flow and sediment transport directions reported from limited numbers of sites possessing sedimentary structures and ice‐kinematic indicators. 
    more » « less
  3. Rock textures observed via thin section are skewed from their true 3D nature. This is due to various cut effects—artifacts introduced due to the lower dimensional nature of the thin section relative to the rock. These cut effects can be corrected, and several methods have been developed to invert crystal shape and crystal size, but with each process performed separately and sequentially. With the ongoing adoption of electron backscatter diffraction (EBSD) by petrologists, an additional data stream has now become available: the 3D orientation of 2D grain sections. For EBSD analysis, no stereological corrections are typically applied for interpreting the data. This study tests whether this orientational information is skewed due to a fabric cut effect. We test this by numerically generating synthetic crystal datasets representative of several crystal shapes and population sizes. We find that EBSD orientational data has a fabric cut effect since crystals oriented with long axes perpendicular to the thin section are more likely to be sampled compared to those with long axes oriented parallel to it. This effect must be accounted for to interpret the true 3D fabric accurately. Towards this end, we develop two new tools for working with EBSD-derived fabric: (1) a simple first-order test for determining if a measured fabric exceeds that of the fabric cut effect, and (2) a method of inverting cut fabrics that provides robust error estimations. We demonstrate the applicability and accuracy of these methods using a range of synthetic examples and a natural sample. With these newly developed tools, there is clear potential for a new textural toolkit framework, to further our ability to correct for the various cut effects while also providing accurate uncertainty estimates. 
    more » « less
  4. We present a new method of linking microstructures, electron backscatter diffraction (EBSD)–derived crystallographic vorticity axis (CVA) analysis, and titanite petrochronology to directly link fabric development to specific deformation events in shear zone rocks with complex histories. This approach is particularly useful where overprinting is incomplete, such that it is unknown which fabric is being dated by the petrochronometer. Here, we compared single-phase CVA patterns of fabric-forming minerals with those of synkinematic petrochronometers (e.g., titanite) to associate the timing of fabric development with deformational events in the middle crust of the George Sound shear zone, Fiordland, New Zealand. The host rocks to the George Sound shear zone include the Carboniferous Large Pluton, where titanite petrochronology demonstrates an unequivocally Cretaceous age of metamorphic titanite growth within mylonitic foliation. However, the host rocks show two distinct CVA patterns: a transtensional deformation event recorded by quartz and plagioclase, and a pure-shear–dominated transpressional deformation event recorded by biotite and titanite. Therefore, the transpressional CVA pattern of the titanite, coupled with its Cretaceous age, shows that it cannot be used to date the quartz and plagioclase fabric developed in response to an older transtensional deformation event. These results demonstrate the necessity of combining EBSD and CVA analysis with petrochronology to demonstrate that synkinematic accessory phase petrochronometers show the same kinematic deformation geometry (i.e., CVA pattern) as the fabric being dated. 
    more » « less
  5. We investigate the deformation conditions of coeval mylonites and pseudotachylytes (pst) exposed in the brittle-ductile transition (BDT) in the Black Belt Shear Zone (BBSZ) in the Southern California Batholith using SEM (Scanning Electron Microscope) imaging, and Electron Backscatter Diffraction (EBSD) analysis. We selected four representative samples along a strain gradient of the BBSZ. The BBSZ is a transpressional shear zone developed within hornblende and biotite tonalites and diorites. The shear zone is discontinuous over a ~ 1.5 - 2 km wide zone, and kinematic indicators show oblique top-to-SW, sinistral-reverse to thrust-sense motion. Metamorphic titanite grains aligned within the mylonitic fabric date the deformation to ~ 83 Ma. SEM and EBSD data show mm-thick seams of pst contained within and parallel to mylonitic foliation, and mutually overprinting relationships between brittle and plastic deformation. We observe a brittle overprint of mylonitic fabric in sample 46 and fractured porphyroclasts reworked into mylonitic fabric in samples 45 and 47. EBSD maps from sample 45 and 47 show decreasing modal percentages of hydrous mafic minerals (biotite and hornblende) in the mylonites with proximity to pst seams, suggesting these melted to form pst. In pst seams, there are embayed and rounded/elliptical plagioclase survivor clasts and acicular and aligned biotite microlites parallel to mylonitic fabric (45 & 47). EBSD maps show pst survivor clasts with the same shear sense as the mylonitic fabric, suggesting co-development. Pole figures show weak CPO in hornblende and plagioclase of sample 46. Samples 45 and 47 have no CPO present in plagioclase, however samples 45, 46, and 47 show strong CPO patterns for quartz that are consistent with prism slip. We interpret dislocation creep as the deformation mechanism accommodating plastic deformation in host mylonites. Quartz CPO patterns provide evidence of mylonitic deformation at temperatures ~ 600o C, and the presence of plagioclase survivor clasts as evidence of pst temperatures of ~1100oC. The kinematically consistent sense of shear between pst and host mylonitic fabrics suggests coeval development that indicate shifts from brittle to ductile deformation. Our results suggest periodic pst-generating events involving melting of hydrous mafic minerals aided the development of coeval mylonites and pst in the BDT. 
    more » « less