skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Universal differentiability sets in Laakso space
We show that there exists a family of mutually singular doubling measures on Laakso space with respect to which real-valued Lipschitz functions are almost everywhere differentiable. This implies that there exists a measure zero universal differentiability set in Laakso space. Additionally, we show that each of the measures constructed supports a Poincare inequality.  more » « less
Award ID(s):
2348715
PAR ID:
10589943
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Nonlinear Analysis
Volume:
255
Issue:
C
ISSN:
0362-546X
Page Range / eLocation ID:
113752
Subject(s) / Keyword(s):
Lipschitz function universal differentiability set Laakso space Poincare inequality
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that there exists a bounded subset of R such that no system of exponentials can be a Riesz basis for the corresponding Hilbert space. An additional result gives a lower bound for the Riesz constant of any putative Riesz basis of the two dimensional disk. 
    more » « less
  2. Abstract Terrestrial Gamma‐ray Flashes (TGFs) are ten‐to‐hundreds of microsecond bursts of gamma‐rays produced when electrons in strong electric fields in thunderclouds are accelerated to relativistic energies. Space instruments have observed TGFs with source photon brightness down to ∼1017–1016. Based on space and aircraft observations, TGFs have been considered rare phenomena produced in association with very few lightning discharges. Space observations associated with lightning ground observations in the radio band have indicated that there exists a population of dimmer TGFs. Here we show observations of TGFs from aircraft altitude that were not detected by a space instrument viewing the same area. The TGFs were found through Monte Carlo modeling to be associated with 1015–1012photons at source, which is several orders of magnitude below what can be seen from space. Our results suggest that there exists a significant population of TGFs that are too weak to be observed from space. 
    more » « less
  3. Nikhil, Bansal; Nagarajan, Viswanath (Ed.)
    We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires space with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for general graphs and a single-pass space 0.483-approximation algorithm for bounded-degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require -space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is Max-CUT where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints. 
    more » « less
  4. We prove that for all integers 2≤m≤d−1, there exists doubling measures on ℝd with full support that are m-rectifiable and purely (m−1)-unrectifiable in the sense of Federer (i.e. without assuming μ≪m). The corresponding result for 1-rectifiable measures is originally due to Garnett, Killip, and Schul (2010). Our construction of higher-dimensional Lipschitz images is informed by a simple observation about square packing in the plane: N axis-parallel squares of side length s pack inside of a square of side length ⌈N1/2⌉s. The approach is robust and when combined with standard metric geometry techniques allows for constructions in complete Ahlfors regular metric spaces. One consequence of the main theorem is that for each m∈{2,3,4} and s0, f(E) has Hausdorff dimension s, and μ(f(E))>0. This is striking, because m(f(E))=0 for every Lipschitz map f:E⊂ℝm→ℍ1 by a theorem of Ambrosio and Kirchheim (2000). Another application of the square packing construction is that every compact metric space 𝕏 of Assouad dimension strictly less than m is a Lipschitz image of a compact set E⊂[0,1]m. Of independent interest, we record the existence of doubling measures on complete Ahlfors regular metric spaces with prescribed lower and upper Hausdorff and packing dimensions. 
    more » « less
  5. null (Ed.)
    We consider criteria for the differentiability of functions with continuous Laplacian on the Sierpiński Gasket and its higher-dimensional variants [Formula: see text], [Formula: see text], proving results that generalize those of Teplyaev [Gradients on fractals, J. Funct. Anal. 174(1) (2000) 128–154]. When [Formula: see text] is equipped with the standard Dirichlet form and measure [Formula: see text] we show there is a full [Formula: see text]-measure set on which continuity of the Laplacian implies existence of the gradient [Formula: see text], and that this set is not all of [Formula: see text]. We also show there is a class of non-uniform measures on the usual Sierpiński Gasket with the property that continuity of the Laplacian implies the gradient exists and is continuous everywhere in sharp contrast to the case with the standard measure. 
    more » « less