The release of ChatGPT in November 2022 prompted a massive uptake of generative artificial intelligence (GenAI) across higher education institutions (HEIs). In response, HEIs focused on regulating its use, particularly among students, before shifting towards advocating for its productive integration within teaching and learning. Since then, many HEIs have increasingly provided policies and guidelines to direct GenAI. This paper presents an analysis of documents produced by 116 US universities classified as as high research activity or R1 institutions providing a comprehensive examination of the advice and guidance offered by institutional stakeholders about GenAI. Through an extensive analysis, we found a majority of universities (N = 73, 63%) encourage the use of GenAI, with many offering detailed guidance for its use in the classroom (N = 48, 41%). Over half the institutions provided sample syllabi (N = 65, 56%) and half (N = 58, 50%) provided sample GenAI curriculum and activities that would help instructors integrate and leverage GenAI in their teaching. Notably, the majority of guidance focused on writing activities focused on writing, whereas references to code and STEM-related activities were infrequent, and often vague, even when mentioned (N = 58, 50%). Based on our findings we caution that guidance for faculty can become burdensome as policies suggest or imply substantial revisions to existing pedagogical practices. 
                        more » 
                        « less   
                    This content will become publicly available on February 12, 2026
                            
                            Analysis of Generative AI Policies in Computing Course Syllabi
                        
                    
    
            Since the release of ChatGPT in 2022, Generative AI (GenAI) is increasingly being used in higher education computing classrooms across the United States. While scholars have looked at overall institutional guidance for the use of GenAI and reports have documented the response from schools in the form of broad guidance to instructors, we do not know what policies and practices instructors are actually adopting and how they are being communicated to students through course syllabi. To study instructors' policy guidance, we collected 98 computing course syllabi from 54 R1 institutions in the U.S. and studied the GenAI policies they adopted and the surrounding discourse. Our analysis shows that 1) most instructions related to GenAI use were as part of the academic integrity policy for the course and 2) most syllabi prohibited or restricted GenAI use, often warning students about the broader implications of using GenAI, e.g. lack of veracity, privacy risks, and hindering learning. Beyond this, there was wide variation in how instructors approached GenAI including a focus on how to cite GenAI use, conceptualizing GenAI as an assistant, often in an anthropomorphic manner, and mentioning specific GenAI tools for use. We discuss the implications of our findings and conclude with current best practices for instructors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2319137
- PAR ID:
- 10589958
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400705311
- Page Range / eLocation ID:
- 18 to 24
- Format(s):
- Medium: X
- Location:
- Pittsburgh PA USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Generative artificial intelligence (GenAI) is increasingly becoming a part of work practices across the technology industry and being used across a range of industries. This has necessitated the need to better understand how GenAI is being used by professionals in the field so that we can better prepare students for the workforce. An improved understanding of the use of GenAI in practice can help provide guidance on the design of GenAI literacy efforts including how to integrate it within courses and curriculum, what aspects of GenAI to teach, and even how to teach it. This paper presents a field study that compares the use of GenAI across three different functions - product development, software engineering, and digital content creation - to identify how GenAI is currently being used in the industry. This study takes a human augmentation approach with a focus on human cognition and addresses three research questions: how is GenAI augmenting work practices; what knowledge is important and how are workers learning; and what are the implications for training the future workforce. Findings show a wide variance in the use of GenAI and in the level of computing knowledge of users. In some industries GenAI is being used in a highly technical manner with deployment of fine-tuned models across domains. Whereas in others, only off-the-shelf applications are being used for generating content. This means that the need for what to know about GenAI varies, and so does the background knowledge needed to utilize it. For the purposes of teaching and learning, our findings indicated that different levels of GenAI understanding needs to be integrated into courses. From a faculty perspective, the work has implications for training faculty so that they are aware of the advances and how students are possibly, as early adopters, already using GenAI to augment their learning practices.more » « less
- 
            Abstract As generative artificial intelligence (GenAI) tools such as ChatGPT become more capable and accessible, their use in educational settings is likely to grow. However, the academic community lacks a comprehensive understanding of the perceptions and attitudes of students and instructors toward these new tools. In the Fall 2023 semester, we surveyed 982 students and 76 faculty at a large public university in the United States, focusing on topics such as perceived ease of use, ethical concerns, the impact of GenAI on learning, and differences in responses by role, gender, and discipline. We found that students and faculty did not differ significantly in their attitudes toward GenAI in higher education, except regarding ease of use, hedonic motivation, habit, and interest in exploring new technologies. Students and instructors also used GenAI for coursework or teaching at similar rates, although regular use of these tools was still low across both groups. Among students, we found significant differences in attitudes between males in STEM majors and females in non-STEM majors. These findings underscore the importance of considering demographic and disciplinary diversity when developing policies and practices for integrating GenAI in educational contexts, as GenAI may influence learning outcomes differently across various groups of students. This study contributes to the broader understanding of how GenAI can be leveraged in higher education while highlighting potential areas of inequality that need to be addressed as these tools become more widely used.more » « less
- 
            Generative AI (GenAI) has brought opportunities and challenges for higher education as it integrates into teaching and learning environments. As instructors navigate this new landscape, understanding their engagement with and attitudes toward GenAI is crucial. We surveyed 178 instructors from a single U.S. university to examine their current practices, perceptions, trust, and distrust of GenAI in higher education in March 2024. While most surveyed instructors reported moderate to high familiarity with GenAI-related concepts, their actual use of GenAI tools for direct instructional tasks remained limited. Our quantitative results show that trust and distrust in GenAI are related yet distinct; high trust does not necessarily imply low distrust, and vice versa. We also found significant differences in surveyed instructors' familiarity with GenAI across different trust and distrust groups. Our qualitative results show nuanced manifestations of trust and distrust among surveyed instructors and various approaches to support calibrated trust in GenAI. We discuss practical implications focused on (dis)trust calibration among instructors.more » « less
- 
            Understanding how relationships between instructors and students develop is important for understanding the undergraduate student experience. We expect the development of positive relationships is related to the social practices (e.g., greetings, using names, sympathizing, or empathizing with students) that instructors use in the course of normal classroom interactions with students. We recorded interactions between instructors and students in remote synchronous online physics problem-solving sessions and surveyed students about their perceptions of their instructors. We selected the highest-rated instructor and lowest-rated instructor in our sample and identified social practices in their conversations with students. We first characterized the frequency of social practice usage by each instructor in their conversations with students. We find that both instructors relied on a set of core social practices in most conversations with students, but that our higher-rated instructor used comparatively more positive commentary and sympathizing or empathizing behaviors than our lower-rated instructor. In comparison, our lower-rated instructor engaged in more negative commentary. Using network analysis, we then explored patterns in co-occurrences of social practices used by each instructor moment-to-moment in conversations and compared the instructors’ social practice network patterns. We find that our higher rated-instructor used a greater variety of social practices during moment-to-moment interactions with students, while our lower-rated instructor spent most of his time focused on classroom business. We suggest that professional development for instructors should include guidance on how messages are delivered in classes and encourage the use of high-impact social practices to foster positive relationships with students.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
