Polycrystalline IrGe4 was synthesized by annealing elements at 800 °C for 240 h, and the composition was confirmed by energy-dispersive X-ray spectroscopy. IrGe4 adopts a chiral crystal structure (space group P3121) instead of a polar crystal structure (P31), which was corroborated by the convergent-beam electron diffraction and Rietveld refinements using synchrotron powder X-ray diffraction data. The crystal structure features layers of IrGe8 polyhedra along the b axis, and the layers are connected by edge- and corner-sharing. Each layer consists of corner-shared [Ir3Ge20] trimers, which are formed by three IrGe8 polyhedra connected by edge-sharing. Temperature-dependent resistivity indicates metallic behavior. The magnetoresistance increases with increasing applied magnetic field, and the nonsaturating magnetoresistance reaches 11.5% at 9 T and 10 K. The Hall resistivity suggests that holes are the majority carrier type, with a carrier concentration of 4.02 × 1021 cm–3 at 300 K. Electronic band structures calculated by density functional theory reveal a Weyl point with a chiral charge of +3 above the Fermi level.
more »
« less
This content will become publicly available on April 18, 2026
Advancing the Ca 14 AlSb 11 Structure Type: Synthesis and Characterization of Yb 14 CdSb 11 for Thermoelectric Applications
The ternary phase, Yb14CdSb11, has been synthesized by flux and polycrystalline methods. The crystal structure is determined via single-crystal X-ray diffraction, revealing that it crystallizes in the Ca14AlSb11 structure type (I41/acd space group with unit cell parameters of a = 16.5962(2) & Aring; and c = 22.1346(5) & Aring;, 90 K, Z = 8, R1 = 2.65%, and wR2 = 4.58%). The polycrystalline form of the compound is synthesized from a stoichiometric reaction of Yb4Sb3, CdSb, Yb, and Sb. The elemental composition is confirmed using scanning electron microscopy and energy-dispersive spectroscopy, and phase purity is verified by powder X-ray diffraction. Thermoelectric measurements, including resistivity, Seebeck coefficient, thermal conductivity, Hall carrier concentration, and Hall mobility, are conducted from 300 to 1273 K. Yb14CdSb11 exhibits a peak zT = 0.90 at 1200 K. Carrier concentration and Hall mobility range from 6.99 x 1020-1.01 x 1021 cm-3 and 4.45-9.35 x 10-1 cm2 V-1 s-1, respectively. This carrier concentration is lower than that reported for the Zn or Mn analogs leading to a lower thermoelectric figure of merit at high temperatures. However, with appropriate doping, this phase should also be a promising p-type candidate for high-temperature energy conversion applications.
more »
« less
- Award ID(s):
- 2307231
- PAR ID:
- 10590012
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Zeitschrift für anorganische und allgemeine Chemie
- ISSN:
- 0044-2313
- Subject(s) / Keyword(s):
- Zintl phase Ca14AlSb11 structure type Thermoelectric performance crystal structure
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The Zintl phases, Yb 14 M Sb 11 ( M = Mn, Mg, Al, Zn), are now some of the highest thermoelectric efficiency p-type materials with stability above 873 K. Yb 14 MnSb 11 gained prominence as the first p-type thermoelectric material to double the efficiency of SiGe alloy, the heritage material in radioisotope thermoelectric generators used to power NASA’s deep space exploration. This study investigates the solid solution of Yb 14 Mg 1− x Al x Sb 11 (0 ≤ x ≤ 1), which enables a full mapping of the metal-to-semiconductor transition. Using a combined theoretical and experimental approach, we show that a second, high valley degeneracy ( N v = 8) band is responsible for the groundbreaking performance of Yb 14 M Sb 11 . This multiband understanding of the properties provides insight into other thermoelectric systems (La 3− x Te 4 , SnTe, Ag 9 AlSe 6 , and Eu 9 CdSb 9 ), and the model predicts that an increase in carrier concentration can lead to zT > 1.5 in Yb 14 M Sb 11 systems.more » « less
-
The Zintl compound Eu 2 ZnSb 2 was recently shown to have a promising thermoelectric figure of merit, zT ∼ 1 at 823 K, due to its low lattice thermal conductivity and high electronic mobility. In the current study, we show that further increases to the electronic mobility and simultaneous reductions to the lattice thermal conductivity can be achieved by isovalent alloying with Bi on the Sb site in the Eu 2 ZnSb 2−x Bi x series ( x = 0, 0.25, 1, 2). Upon alloying with Bi, the effective mass decreases and the mobility linearly increases, showing no signs of reduction due to alloy scattering. Analysis of the pair distribution functions obtained from synchrotron X-ray diffraction revealed significant local structural distortions caused by the half-occupied Zn site in this structure type. It is all the more surprising, therefore, to find that Eu 2 ZnBi 2 possesses high electronic mobility (∼100 cm 2 V −1 s −1 ) comparable to that of AM 2 X 2 Zintl compounds. The enormous degree of disorder in this series gives rise to exceptionally low lattice thermal conductivity, which is further reduced by Bi substitution due to the decreased speed of sound. Increasing the Bi content was also found to decrease the band gap while increasing the carrier concentration by two orders of magnitude. Applying a single parabolic band model suggests that Bi-rich compositions of Eu 2 ZnSb 2−x Bi x have the potential for significantly improved zT ; however, further optimization is necessary through reduction of the carrier concentration to realize high zT .more » « less
-
null (Ed.)FeAs 2−x Se x ( x = 0.30–1.0) samples were synthesized as phase pure powders by conventional solid-state techniques and as single crystals ( x = 0.50) from chemical vapor transport. The composition of the crystals was determined to be Fe 1.025(3) As 1.55(3) Se 0.42(3) , crystallizing in the marcasite structure type, Pnnm space group. FeAs 2−x Se x (0 < x < 1) was found to undergo a marcasite-to-arsenopyrite ( P 2 1 / c space group) structural phase transition at x ∼ 0.65. The structures are similar, with the marcasite structure best described as a solid solution of As/Se, whereas the arsenopyrite has ordered anion sites. Magnetic susceptibility and thermoelectric property measurements from 300–2 K were performed on single crystals, FeAs 1.50 Se 0.50 . Paramagnetic behavior is observed from 300 to 17 K and a Seebeck coefficient of −33 μV K −1 , an electrical resistivity of 4.07 mΩ cm, and a very low κ l of 0.22 W m −1 K −1 at 300 K are observed. In order to determine the impact of the structural transition on the high-temperature thermoelectric properties, polycrystalline FeAs 2−x Se x ( x = 0.30, 0.75, 0.85, 1.0) samples were consolidated into dense pellets for measurements of thermoelectric properties. The x = 0.85 sample shows the best thermoelectric performance. The electronic structure of FeAsSe was calculated with DFT and transport properties were approximately modeled above 500 K.more » « less
-
Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca are isoelectronic substitutions, the changes in properties are attributed to changes in the electronic structure. Both solid solutions show that the thermal conductivities remain extremely low (∼0.4 W m −1 K −1 ) and that the Seebeck coefficients remain high (>200 μV K −1 ). The temperature dependence of the carrier mobility with increased Ca substitution, changing from approximately T −1 to T −0.5 , suggests that another scattering mechanism is being introduced. As the bonding changes from polar covalent with Yb to ionic for Ca, polar optical phonon scattering becomes the dominant mechanism. Experimental studies of the Cd solid solutions result in a max zT of ∼1 at 800 K and, more importantly for application purposes, a ZT avg ∼ 0.6 from 300 K to 800 K.more » « less