skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon Emissions From Low‐Order Streams in a Tropical, High‐Elevation, Peatland Ecosystem Are Mediated by Catchment Morphology
Abstract Inland waters emit large amounts of carbon and are key players in the global carbon budget. Particularly high rates of carbon emissions have been reported in streams draining mountains, tropical regions, and peatlands. However, few studies have examined the spatial variability of CO2concentrations and fluxes occurring within these systems, particularly as a function of catchment morphology. Here we evaluated spatial patterns of CO2in three tropical, headwater catchments in relation to the river network and stream geomorphology. We measured dissolved carbon dioxide (pCO2), aquatic CO2emissions, discharge, and stream depth and width at high spatial resolutions along multiple stream reaches. Confirming previous studies, we found that tropical headwater streams are an important source of CO2to the atmosphere. More notably, we found marked, predictable spatial organization in aquatic carbon fluxes as a function of landscape position. For example,pCO2was consistently high (>10,000 ppm) at locations close to groundwater sources and just downstream of hydrologically connected wetlands, but consistently low (<1,000 ppm) in high gradient locations or river segments with larger drainage areas. Taken together, our findings suggest that catchment area and stream slope are important drivers ofpCO2and gas transfer velocity (k) in mountainous streams, and as such they should be considered in catchment‐scale assessments of CO2emissions. Furthermore, our work suggests that accurate estimation of CO2emissions requires understanding of dynamics across the entire stream network, from the smallest seeps to larger streams.  more » « less
Award ID(s):
2317854
PAR ID:
10590558
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
61
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High‐altitude tropical grasslands, known as “páramos,” are characterized by high solar radiation, high precipitation, and low temperature. They also exhibit some of the highest ecosystem carbon stocks per unit area on Earth. Recent observations have shown that páramos may be a net source of CO2to the atmosphere as a result of climate change; however, little is known about the source of this excess CO2in these mountainous environments or which landscape components contribute the most CO2. We evaluated the spatial and temporal variability of surface CO2fluxes to the atmosphere from adjacent terrestrial and aquatic environments in a high‐altitude catchment of Ecuador, based on a suite of field measurements performed during the wet season. Our findings revealed the importance of hydrologic dynamics in regulating the magnitude and likely fate of dissolved carbon in the stream. While headwater catchments are known to contribute disproportionately larger amounts of carbon to the atmosphere than their downstream counterparts, our study highlights the spatial heterogeneity of CO2fluxes within and between aquatic and terrestrial landscape elements in headwater catchments of complex topography. Our findings revealed that CO2evasion from stream surfaces was up to an order of magnitude greater than soil CO2efflux from the adjacent terrestrial environment. Stream carbon flux to the atmosphere appeared to be transport limited (i.e., controlled by flow characteristics, turbulent flow, and water velocity) in the upper reaches of the stream, and source limited (i.e., controlled by CO2and carbon availability) in the lower reaches of the stream. A 4‐m waterfall along the channel accounted for up to 35% of the total evasion observed along a 250‐m stream reach. These findings represent a first step in understanding ecosystem carbon cycling at the interface of terrestrial and aquatic ecosystems in high‐altitude, tropical, headwater catchments. 
    more » « less
  2. Abstract The heterogeneity of carbon dioxide (CO2) and methane (CH4) sources within and across watersheds presents a challenge to understanding the contributions of different ecosystem patch types to stream corridor and watershed carbon cycling. Changing hydrologic connections between corridor patches (e.g., streams, vernal pools, hillslopes) can influence stream corridor greenhouse gas emissions, but the spatiotemporal dynamics of emissions within and among corridor patches are not well‐quantified. To identify patterns and sources of carbon emissions across stream corridors, we measured gas concentrations and fluxes over two summers at Coweeta Hydrologic Laboratory, NC. We sampled CO2and CH4along four stream channels (including flowing and dry reaches), adjacent vernal pools, and riparian hillslopes. Stream CO2and CH4emissions were spatially heterogeneous. All streams were sources of CO2to the atmosphere (median = 97.2 mmol m−2d−1) but were sources or sinks of CH4depending on location (−0.19 to 4.57 mmol m−2d−1). CO2emissions were lower during the drier of two sampling years but were stable from month to month in the drier summer. CO2and CH4emissions also varied by both corridor and patch type; the presence of a vernal pool in the corridor had the strongest impact on emissions. Vernal pool patches emitted more CO2and CH4(246 and 1.95 mmol m−2d−1, respectively) than their adjacent streams. High resolution sampling of carbon fluxes from patches within and among stream corridors improves our understanding of the connections between terrestrial, riparian, and aquatic zones in a watershed and their contributions to overall catchment carbon emissions. 
    more » « less
  3. Abstract Increases to summer Arctic rainfall and tundra thermal degradation are altering hydrological cycling in coastal watersheds with implications for carbon (C) cycling and transport of C to the atmosphere and coast. Arctic riverine research has focused on large rivers; however, small streams contribute significantly to vertical and longitudinal carbon dioxide (CO2) fluxes. Despite the well‐established connection between hydrology and biogeochemistry, the impact of extreme rainfall events on Arctic aquatic C cycling remains a knowledge gap. This study characterized how hydrology, biogeochemistry, and geomorphology control the supply of CO2to low order streams and their propensity to act as atmospheric CO2sources. We characterize biogeochemical and hydrologic processes in unique reaches from a beaded stream and stream impacted by thermal erosion. Rainfall and its resulting increases to terrestrial‐aquatic connectivity drove the movement of CO2and biodegradable dissolved organic C (BDOC) from soils into streams, however, BDOC mineralization only contributed a small portion of surface CO2fluxes. Rain events likely stimulated stream benthic respiration, which led to CO2contributions from net ecosystem production often exceeding surface CO2fluxes and downstream CO2transport. In addition, thermal degradation played a role in terrestrial‐aquatic connectivity of the streams. The erosion‐affected stream had inconsistent and smaller inputs of CO2, had weaker heterotrophic conditions, and smaller CO2emissions. Understanding how hydrologic regime, influenced by late summer rain events and stream morphology, controls the transport of CO2and metabolism in small tundra streams will help improve predictions of landscape scale CO2emissions from these critically understudied systems. 
    more » « less
  4. Abstract Headwater streams are known sources of methane (CH4) to the atmosphere, but their contribution to global scale budgets remains poorly constrained. While efforts have been made to better understand diffusive fluxes of CH4in streams, much less attention has been paid to ebullitive fluxes. We examine the temporal and spatial heterogeneity of CH4ebullition from four lowland headwater streams in the temperate northeastern United States over a 2‐yr period. Ebullition was observed in all monitored streams with an overall mean rate of 1.00 ± 0.23 mmol CH4m−2d−1, ranging from 0.01 to 1.79 to mmol CH4m−2d−1across streams. At biweekly timescales, rates of ebullition tended to increase with temperature. We observed a high degree of spatial heterogeneity in CH4ebullition within and across streams. Yet, catchment land use was not a simple predictor of this heterogeneity, and instead patches scale variability weakly explained by water depth and sediment organic matter content and quality. Overall, our results support the prevalence of CH4ebullition from streams and high levels of variability characteristic of this process. Our findings also highlight the need for robust temporal and spatial sampling of ebullition in lotic ecosystems to account for this high level of heterogeneity, where multiple sampling locations and times are necessary to accurately represent the mean rate of flux in a stream. The heterogeneity observed likely indicates a complex set of drivers affect CH4ebullition from streams which must be considered when upscaling site measurements to larger spatial scales. 
    more » « less
  5. Abstract Streams in high‐elevation tropical ecosystems known as páramos may be significant sources of carbon dioxide (CO2) to the atmosphere by transforming terrestrial carbon to gaseous CO2. Studies of these environments are scarce, and estimates of CO2fluxes are poorly constrained. In this study, we use two independent methods for measuring gas transfer velocity (k), a critical variable in the estimation of CO2evasion and other biogeochemical processes. The first method, kinematick600(k600‐K), is derived from an empirical relationship between temperature‐adjustedk(k600) and the physical characteristics of the stream. The second method, measuredk600(k600‐M), estimates gas transfer velocity in the stream by in situ measurements of dissolved CO2(pCO2) and CO2evasion to the atmosphere, adjusting for temperature. Measurements were collected throughout a 5‐week period during the wet season of a peatland‐stream transition within a páramo ecosystem located above 4000 m in elevation in northeastern Ecuador. We characterized the spatial heterogeneity of the 250‐m reach on five occasions, and both methods showed a wide range of variability ink600at small spatial scales. Values ofk600‐Kranged from 7.42 to 330 m/d (mean = 116 ± 95.1 m/d), whereas values ofk600‐Mranged from 23.5 to 444 m/d (mean = 121 ± 127 m/d). Temporal variability ink600was driven by increases in stream discharge caused by rain events, whereas spatial variability was driven by channel morphology, including stream width and slope. The two methods were in good agreement (less than 16% difference) at high and medium stream discharge (above 7.0 L/s). However, the two methods considerably differed from one another (up to 73% difference) at low stream discharge (below 7.0 L/s, which represents 60% of the observations collected). Our study provides the first estimates ofk600values in a high‐elevation tropical catchment across steep environmental gradients and highlights the combined effects of hydrology and stream morphology in co‐regulating gas transfer velocities in páramo streams. 
    more » « less