skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: A compact wideband dielectric resonator antenna with optimized inhomogeneous material distribution
This article proposes a novel compact wideband dielectric resonator antenna design that incorporates inhomogeneous material distribution in a cubic structure. Specifically, in this design, the cubic dielectric resonator antenna is divided into multiple small blocks, and a continuous genetic algorithm is employed to optimize the material property of each block in order to maximize the radiation bandwidth. As a result, a cubic dielectric resonator antenna with inhomogeneous material distributions is designed and tested. In measurement, the proposed compact dielectric resonator antenna design exhibits 64.9% impedance bandwidth (4.08–8 GHz), considerably higher than the bandwidth of the initial homogeneous dielectric resonator antenna. The maximum system gain achieved over the frequency range is 9 dB at 7 GHz, with a peak measured system efficiency of 90.6%.  more » « less
Award ID(s):
2138741
PAR ID:
10590564
Author(s) / Creator(s):
;
Publisher / Repository:
IET
Date Published:
Journal Name:
Electronics Letters
Volume:
60
Issue:
23
ISSN:
0013-5194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the design of a compact 4 × 4 antenna array suitable for unmanned aerial vehicle-to-vehicle (V2V) communication applications. The proposed antenna array can offer a narrow beamwidth, high gain, wide beam steering capability and is highly compact. The substrate material used is Rogers 5880 with a thickness of 0.2 mm, and copper is used for the patch and ground material with 0.14 mm thickness. The di-electric constant and the tangent loss of the Rogers substrate are 2.2 and 0.0004, respectively. 45° phase shifters are incorporated in the feeding paths to facilitate the beamsteering. The dimensions of the proposed antenna array are 32 × 32 × 0.48 mm 3 . The designed antenna array has the resonating frequency at 24 GHz and has a bandwidth of 0.83 GHz (3.5% fractional bandwidth). The measured far field gain of the designed antenna array is 16.7 dBi. The beamwidth derived from the array’s far-field radiation pattern is 14.6°, and the maximum beam steering range of the array is 102° along the θ axis. 
    more » « less
  2. In this paper, a Multi-Input Multi-Output (MIMO) antenna of 4 monopole elements is presented on Zirconia Ribbon Ceramic (ZRC) substrate. Utilization of this substrate material allows an implementation of an antenna system that is able to withstand harsh environments and high temperatures due to inherent substrate characteristics. The proposed MIMO design supports an operational antenna bandwidth from 2.44 GHz to 2.55 GHz with a center frequency around 2.5 GHz covered by all 4 antenna elements. High antenna isolation below -15 dB is obtained among the ports. The antenna also provides a peak gain over 3 dB through the entire band of interest (3.34 dB at 2.5 GHz) and low cross-polarization. 
    more » « less
  3. A flexible, compact C-shaped coplanar waveguide- fed (CPW-fed) circularly polarized (CP) antenna is proposed for Internet of Things (IoT) applications. The antenna is designed on a polyethylene terephthalate (PET) substrate, enabling flexibility and the potential for conformal integration. The design achieves a wide 3-dB axial ratio bandwidth (ARBW) of 5.66 GHz (79.94%) from 4.25 GHz to 9.91 GHz, demonstrating excellent CP perfor- mance. Additionally, the antenna exhibits a broad 10-dB return loss bandwidth (RLBW) of 7.67 GHz (99.55%) spanning 3.87 GHz to 11.54 GHz, fully encompassing the ARBW. The antenna maintains a peak gain over 3.5 dB and radiation efficiency over 95% within the ARBW. This wide operational range makes the antenna suitable for a variety of wireless communication systems, including WiFi, WiMAX, and emerging 5G technologies. 
    more » « less
  4. In this paper, a simple, and compact CPW-fed circularly polarized antenna is presented. The proposed antenna consists of a modified “S” shaped patch which has slots in three different places along with a slot in the ground plane. These slots contribute in increasing the bandwidth of the axial ratio. The antenna has a 3 dB axial ratio bandwidth of 10.47% (4.07 GHz–4.52 GHz) and an impedance bandwidth of 17.53% (3.8 GHz – 4.53 GHz) covering the full region of axial ratio band. Moreover, this antenna is designed using PET paper which makes it flexible in nature and the first flexible antenna in discussed frequency range to the best of author’s knowledge. 
    more » « less
  5. This paper presents design of a wearable UWB (ultra-wide band) antenna and its corresponding SAR (specific absorption rate) analysis and power transfer capability estimation when it is placed on a human body. In this work, Polyimide with a thickness of 0.1 mm is used as the substrate material, and gold with a thickness of 200 nm is used for the patch and ground material. The dielectric constant and tangent loss of the polyimide substrate are 3.5 and 0.0002, respectively. The dimensions of the proposed antenna are 30×30×0.1004 mm3. The designed antenna has the resonating frequency at 3.11 GHz and a bandwidth of 3.06GHz. The near-field gain of the designed antenna is 6.43 dBi. The SAR analysis generated SAR values of 0.138 W/kg and 0.147 W/kg for antenna placed on flat body model and curved body model, respectively, which are within the safe limit of 2 W/kg averaged over 10g of tissue as specified by the ICNIRP (International Commission of Non-Ionization Radiation Protection). This indicates that the antenna is safe and suitable for use in wireless wearable sensors. 
    more » « less