skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: A Self‐Healing, Flowable, Yet Solid Electrolyte Suppresses Li‐Metal Morphological Instabilities
Abstract Lithium metal (Li0) solid‐state batteries encounter implementation challenges due to dendrite formation, side reactions, and movement of the electrode–electrolyte interface in cycling. Notably, voids and cracks formed during battery fabrication/operation are hot spots for failure. Here, a self‐healing, flowable yet solid electrolyte composed of mobile ceramic crystals embedded in a reconfigurable polymer network is reported. This electrolyte can auto‐repair voids and cracks through a two‐step self‐healing process that occurs at a fast rate of 5.6 µm h−1. A dynamical phase diagram is generated, showing the material can switch between liquid and solid forms in response to external strain rates. The flowability of the electrolyte allows it to accommodate the electrode volume change during Li0stripping. Simultaneously, the electrolyte maintains a solid form with high tensile strength (0.28 MPa), facilitating the regulation of mossy Li0deposition. The chemistries and kinetics are studied by operando synchrotron X‐ray and in situ transmission electron microscopy (TEM). Solid‐state NMR reveals a dual‐phase ion conduction pathway and rapid Li+diffusion through the stable polymer‐ceramic interphase. This designed electrolyte exhibits extended cycling life in Li0–Li0cells, reaching 12 000 h at 0.2 mA cm−2and 5000 h at 0.5 mA cm−2. Furthermore, owing to its high critical current density of 9 mA cm−2, the Li0–LiNi0.8Mn0.1Co0.1O2(NMC811) full cell demonstrates stable cycling at 5 mA cm−2for 1100 cycles, retaining 88% of its capacity, even under near‐zero stack pressure conditions.  more » « less
Award ID(s):
2011967
PAR ID:
10590626
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
49
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Oxide ceramic electrolytes (OCEs) have great potential for solid-state lithium metal (Li0) battery applications because, in theory, their high elastic modulus provides better resistance to Li0dendrite growth. However, in practice, OCEs can hardly survive critical current densities higher than 1 mA/cm2. Key issues that contribute to the breakdown of OCEs include Li0penetration promoted by grain boundaries (GBs), uncontrolled side reactions at electrode-OCE interfaces, and, equally importantly, defects evolution (e.g., void growth and crack propagation) that leads to local current concentration and mechanical failure inside and on OCEs. Here, taking advantage of a dynamically crosslinked aprotic polymer with non-covalent –CH3⋯CF3bonds, we developed a plastic ceramic electrolyte (PCE) by hybridizing the polymer framework with ionically conductive ceramics. Using in-situ synchrotron X-ray technique and Cryogenic transmission electron microscopy (Cryo-TEM), we uncover that the PCE exhibits self-healing/repairing capability through a two-step dynamic defects removal mechanism. This significantly suppresses the generation of hotspots for Li0penetration and chemomechanical degradations, resulting in durability beyond 2000 hours in Li0-Li0cells at 1 mA/cm2. Furthermore, by introducing a polyacrylate buffer layer between PCE and Li0-anode, long cycle life >3600 cycles was achieved when paired with a 4.2 V zero-strain cathode, all under near-zero stack pressure. 
    more » « less
  2. Abstract Despite significant interest toward solid‐state electrolytes owing to their superior safety in comparison to liquid‐based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high‐power density batteries. Here, a novel quasi‐solid Li+ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm−2at room temperature. The cycling overpotential is dropped by 75% in comparison to BP‐free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ions around (trifluoromethanesulfonyl)imide (TFSI) pairs and ethylene‐oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid‐state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long‐life cycling. 
    more » « less
  3. Abstract Developing promising solid‐state Li batteries with capabilities of high current densities have been a major challenge partly due to large interfacial resistance across the electrode/electrolyte interfaces. This work represents an integrated network of self‐standing polymer electrolyte and active electrode materials with in situ UV cross‐linking. This method provides a uniform morphology of composite polymer electrolyte with low thickness of 20–40 μm. This modification leads to promising cycling results with 85% specific capacity retention in Li||LiFePO4cell over 100 cycles at high current densities of 170 mA g−1(~25 μA cm−2, 1 C).By applying this method, the interfacial resistance decreases as high as seven folds compared to noncross‐linked interfaces. The following work introduce a facile and cost‐effective method in developing fast‐charging self‐standing polymer batteries with enhanced electrochemical properties. image 
    more » « less
  4. Abstract In this report, a facile wet chemical method using acetonitrile combined with thermal annealing was used to prepare Li2S‐P2S5(LPS) based glass‐ceramic electrolytes with (1 wt%, 3 wt%, and 5 wt% Ce2S3) and without Ce2S3doping. The crystal structure, ionic conductivity, and chemical stability of Li7P3S11glass‐ceramic electrolytes were examined at varying temperatures (250–350°C). The results indicated that the highest ionic conductivity of 3.15 × 10−4S cm−1for pure Li7P3S11was observed at a temperature of 325°C. By incorporating 1 wt% Ce2S3and subjecting it to a heat treatment at 250°C, the glass ceramic electrolyte attained a remarkable ionic conductivity of 7.7 × 10−4(S cm−1) at 25°C. Furthermore, it exhibited a stable and extensive electrochemical potential range, reaching up to 5 volts when compared to the Li/Li+reference electrode. By tuning the glass transition and crystallization temperature, cerium doping seems to make Li7P3S11more chemically stable, compared to its original 70Li2S‐30P2S5counterpart. According to Raman and X‐ray photoelectron spectroscopy analyses, cerium doping inhibits the decomposition of highly conductive P2S74‐(pyro‐thiophosphate) to PS43−and P2S64−. Doped LPS has a greater crystallinity and more uniform microstructure than pure LPS, according to XRD, Raman spectroscopy, and scanning electron microscopy analysis. Consequently, Li7P2.9Ce0.1S11electrolyte shows great potential as a solid‐state electrolyte for constructing high‐performance sulfide‐based all‐solid‐state batteries. 
    more » « less
  5. Abstract The concept of employing highly concentrated electrolytes has been widely incorporated into electrolyte design, due to their enhanced Li‐metal passivation and oxidative stability compared to their diluted counterparts. However, issues such as high viscosity and sub‐optimal wettability, compromise their suitability for commercialization. In this study, we present a highly concentrated dimethyl ether‐based electrolyte that appears as a liquid phase at ambient conditions via Li+‐ solvents ion‐dipole interactions (Coulombic condensation). Unlike conventional high salt concentration ether‐based electrolytes, it demonstrates enhanced transport properties and fluidity. The anion‐rich solvation structure also contributes to the formation of a LiF‐rich salt‐derived solid electrolyte interphase, facilitating stable Li metal cycling for over 1000 cycles at 0.5 mA cm−2, 1 mAh cm−2condition. When combined with a sulfurized polyacrylonitrile (SPAN) electrode, the electrolyte effectively reduces the polysulfide shuttling effect and ensures stable performance across a range of charging currents, up to 6 mA cm−2. This research underscores a promising strategy for developing an anion‐rich, high concentration ether electrolyte with decreased viscosity, which supports a Li metal anode with exceptional temperature durability and rapid charging capabilities. 
    more » « less