skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Vision-Language Models for Design Concept Generation: An Actor–Critic Framework
We introduce a novel actor-critic framework that utilizes vision-language models (VLMs) and large language models (LLMs) for design concept generation, particularly for producing a diverse array of innovative solutions to a given design problem. By leveraging the extensive data repositories and pattern recognition capabilities of these models, our framework achieves this goal through enabling iterative interactions between two VLM agents: an actor (i.e., concept generator) and a critic. The actor, a custom VLM (e.g., GPT-4) created using few-shot learning and fine-tuning techniques, generates initial design concepts that are improved iteratively based on guided feedback from the critic—a prompt-engineered LLM or a set of design-specific quantitative metrics. This process aims to optimize the generated concepts with respect to four metrics: novelty, feasibility, problem–solution relevancy, and variety. The framework incorporates both long-term and short-term memory models to examine how incorporating the history of interactions impacts decision-making and concept generation outcomes. We explored the efficacy of incorporating images alongside text in conveying design ideas within our actor–critic framework by experimenting with two mediums for the agents: vision language and language only. We extensively evaluated the framework through a case study using the AskNature dataset, comparing its performance against benchmarks such as GPT-4 and real-world biomimetic designs across various industrial examples. Our findings underscore the framework’s capability to iteratively refine and enhance the initial design concepts, achieving significant improvements across all metrics. We conclude by discussing the implications of the proposed framework for various design domains, along with its limitations and several directions for future research in this domain.  more » « less
Award ID(s):
2050052
PAR ID:
10590692
Author(s) / Creator(s):
;
Publisher / Repository:
ASME Journal of Mechanical Design
Date Published:
Journal Name:
Journal of Mechanical Design
Volume:
147
Issue:
9
ISSN:
1050-0472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this article, we propose a novel semicentralized deep deterministic policy gradient (SCDDPG) algorithm for cooperative multiagent games. Specifically, we design a two-level actor-critic structure to help the agents with interactions and cooperation in the StarCraft combat. The local actor-critic structure is established for each kind of agents with partially observable information received from the environment. Then, the global actor-critic structure is built to provide the local design an overall view of the combat based on the limited centralized information, such as the health value. These two structures work together to generate the optimal control action for each agent and to achieve better cooperation in the games. Comparing with the fully centralized methods, this design can reduce the communication burden by only sending limited information to the global level during the learning process. Furthermore, the reward functions are also designed for both local and global structures based on the agents' attributes to further improve the learning performance in the stochastic environment. The developed method has been demonstrated on several scenarios in a real-time strategy game, i.e., StarCraft. The simulation results show that the agents can effectively cooperate with their teammates and defeat the enemies in various StarCraft scenarios. 
    more » « less
  2. Reward engineering has long been a challenge in Reinforcement Learning (RL) research, as it often requires extensive human effort and iterative processes of trial-and-error to design effective reward functions. In this paper, we propose RL-VLM-F, a method that automatically generates reward functions for agents to learn new tasks, using only a text description of the task goal and the agent's visual observations, by leveraging feedbacks from vision language foundation models (VLMs). The key to our approach is to query these models to give preferences over pairs of the agent's image observations based on the text description of the task goal, and then learn a reward function from the preference labels, rather than directly prompting these models to output a raw reward score, which can be noisy and inconsistent. We demonstrate that RL-VLM-F successfully produces effective rewards and policies across various domains - including classic control, as well as manipulation of rigid, articulated, and deformable objects - without the need for human supervision, outperforming prior methods that use large pretrained models for reward generation under the same assumptions. 
    more » « less
  3. The increasing complexity of integrated circuit design requires customizing Power, Performance, and Area (PPA) metrics according to different application demands. However, most engineers cannot anticipate requirements early in the design process, often discovering mismatches only after synthesis, necessitating iterative optimization or redesign. Some works have shown the promising capabilities of large language models (LLMs) in hardware design generation tasks, but they fail to tackle the PPA trade-off problem. In this work, we propose an LLM-based reinforcement learning framework, PPA-RTL, aiming to introduce LLMs as a cutting-edge automation tool by directly incorporating post-synthesis metrics PPA into the hardware design generation phase. We design PPA metrics as reward feedback to guide the model in producing designs aligned with specific optimization objectives across various scenarios. The experimental results demonstrate that PPA-RTL models, optimized for Power, Performance, Area, or their various combinations, significantly improve in achieving the desired trade-offs, making PPA-RTL applicable to a variety of application scenarios and project constraints. 
    more » « less
  4. Faggioli, G; Ferro, N; Galuščáková, P; de, A (Ed.)
    This working note documents the participation of CS_Morgan in the ImageCLEFmedical 2024 Caption subtasks, focusing on Caption Prediction and Concept Detection challenges. The primary objectives included training, validating, and testing multimodal Artificial Intelligence (AI) models intended to automate the process of generating captions and identifying multi-concepts of radiology images. The dataset used is a subset of the Radiology Objects in COntext version 2 (ROCOv2) dataset and contains image-caption pairs and corresponding Unified Medical Language System (UMLS) concepts. To address the caption prediction challenge, different variants of the Large Language and Vision Assistant (LLaVA) models were experimented with, tailoring them for the medical domain. Additionally, a lightweight Large Multimodal Model (LMM), and MoonDream2, a small Vision Language Model (VLM), were explored. The former is the instruct variant of the Image-aware Decoder Enhanced à la Flamingo with Interleaved Cross-attentionS (IDEFICS) 9B obtained through quantization. Besides LMMs, conventional encoder-decoder models like Vision Generative Pre-trained Transformer 2 (visionGPT2) and Convolutional Neural Network-Transformer (CNN-Transformer) architectures were considered. Consequently, this enabled 10 submissions for the caption prediction task, with the first submission of LLaVA 1.6 on the Mistral 7B weights securing the 2nd position among the participants. This model was adapted using 40.1M parameters and achieved the best performance on the test data across the performance metrics of BERTScore (0.628059), ROUGE (0.250801), BLEU-1 (0.209298), BLEURT (0.317385), METEOR (0.092682), CIDEr (0.245029), and RefCLIPScore (0.815534). For the concept detection task, our single submission based on the ConvMixer architecture—a hybrid approach leveraging CNN and Transformer advantages—ranked 9th with an F1-score of 0.107645. Overall, the evaluations on the test data for the caption prediction task submissions suggest that LMMs, quantized LMMs, and small VLMs, when adapted and selectively fine-tuned using fewer parameters, have ample potential for understanding medical concepts present in images. 
    more » « less
  5. Medical vision-language models (VLMs) combine computer vision (CV) and natural language processing (NLP) to analyze visual and textual medical data. Our paper reviews recent advancements in developing VLMs specialized for healthcare, focusing on publicly available models designed for medical report generation and visual question answering (VQA). We provide background on NLP and CV, explaining how techniques from both fields are integrated into VLMs, with visual and language data often fused using Transformer-based architectures to enable effective learning from multimodal data. Key areas we address include the exploration of 18 public medical vision-language datasets, in-depth analyses of the architectures and pre-training strategies of 16 recent noteworthy medical VLMs, and comprehensive discussion on evaluation metrics for assessing VLMs' performance in medical report generation and VQA. We also highlight current challenges facing medical VLM development, including limited data availability, concerns with data privacy, and lack of proper evaluation metrics, among others, while also proposing future directions to address these obstacles. Overall, our review summarizes the recent progress in developing VLMs to harness multimodal medical data for improved healthcare applications. 
    more » « less