SUMMARY Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, includingSolanum lycopersicoides, have been crossed toS. lycopersicumfor the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome‐scale genome assembly forS. lycopersicoidesLA2951, which contains 37 938 predicted protein‐coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of theS. lycopersicoidesintrogressions in a set ofS. lycopersicumcv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity‐associated function of the clusteredPtogene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of theAuberginelocus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild speciesS. lycopersicoides, which we use to shed light on theAuberginelocus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate.
more »
« less
This content will become publicly available on May 3, 2026
Effect of plant tissue culture parameters on the ploidy level of Physalis grisea, Solanum lycopersicum , and Solanum prinophyllum regenerants
Abstract Plants regenerated from seedling explants (hypocotyls and cotyledons) of the Solanaceae family membersPhysalis grisea(groundcherry),Solanum lycopersicum(tomato), andSolanum prinophyllum(forest nightshade) were used to determine the in vitro culture parameters that contribute to the incidence in polyploidization of tissue culture-derived plants (regenerants) from these species. We examined the possible effects of zeatin concentration in the plant regeneration medium, explant source, and species. Plants were grown to maturity under greenhouse conditions, pollen was collected and germinated. Flow cytometry analysis verified the utility of the pollen germination method for determining differences in ploidy, which was based on the number of pollen tubes produced with one tube representing diploid and two indicating polyploid. As for zeatin concentration, we assessed the effect of our standard method of initiation on medium containing 2 mg/l followed by 1 mg/l 2 weeks after culture initiation in comparison with 0.25, 0.5, and 1 mg/l throughout the culture lifetime. There were no major correlations for zeatin concentration on ploidy status across the species except for plants regenerated fromS. lycopersicumhypocotyl explants where the percentage of polyploid regenerants increased with increasing concentrations. As for species and explant effects,P. griseaplants regenerated from hypocotyl explants had the highest percentage of polyploid plants at 81% compared to 43% and 35% forS. lycopersicumandS. prinophyllum, respectively. From cotyledons, 8% ofS. lycopersicumand 20% ofS. prinophyllumwere polyploid. A comparison withP. griseacould not be made because cotyledon explants do not regenerate on zeatin-containing medium. The results indicated the incidence of polyploidization cannot be generalized for zeatin concentration, however, an influence of explant type and species was observed. Effects of increased ploidy on plant morphology were primarily larger flower and seed size; however, no significant differences were observed in plant or fruit size.
more »
« less
- Award ID(s):
- 2216612
- PAR ID:
- 10590917
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Understanding the impact of elevated CO2(eCO2) in global agriculture is important given climate change projections. Breeding climate‐resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2is poorly understood, especially in crop species. We describe the different ways in whichSolanum lycopersicumand its wild relativeS. pennelliirespond to eCO2, from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2.more » « less
-
PremiseCommon taxonomic practices, which condition species' descriptions on diagnostic morphological traits, may systematically lump outcrossing species and unduly split selfing species. Specifically, higher effective population sizes and genetic diversity of obligate outcrossers are expected to result less reliable phenotypic diagnoses. Wild tomatoes, members ofSolanumsect.Lycopersicum, are commonly used as a source of exotic germplasm for improvement of the cultivated tomato, and are increasingly employed in basic research. Although the section experienced significant early work, which continues presently, the taxonomic status of many wild species has undergone a number of significant revisions and remains uncertain. Species in this section vary in their breeding systems, notably the expression of self‐incompatibility, which determines individual propensity for outcrossing MethodsHere, we examine the taxonomic status of obligately outcrossing Chilean wild tomato (Solanum chilense) using reduced‐representation sequencing (RAD‐seq), a range of phylogenetic and population genetic analyses, as well as analyses of crossing and morphological data. ResultsOverall, each of our analyses provides a considerable weight of evidence that the Pacific coastal populations and Andean inland populations of the currently describedSolanum chilenserepresent separately evolving populations, and conceal at least one undescribed cryptic species. ConclusionsDespite its vast economic importance,Solanumsect.Lycopersiconstill exhibits considerable taxonomic instability. A pattern of under‐recognition of outcrossing species may be common, not only in tomatoes, but across flowering plants. We discuss the possible causes and implications of this observation, with a focus on macroevolutionary inference.more » « less
-
Premise of research. Polyploidy, a major evolutionary process in flowering plants, is expected to 19 impact floral traits which can have cascading effects on pollination interactions, but this may 20 depend on selfing propensity. In a novel use of herbarium specimens, we assessed the effects of 21 polyploidy and mating system on floral traits and the pollination niche of 40 Brassicaceae 22 species. 23 Methodology. We combined data on mating system (self-compatible or self-incompatible) with 24 inferred ploidy level (polyploid or diploid) and use phylogenetically controlled analyses to 25 investigate their influence on floral traits (size and shape) and the degree of pollination 26 generalism based on the frequency and the richness of heterospecific pollen morphospecies 27 captured by stigmas. 28 Pivotal Results. Flower size (but not shape) depended on the interaction between ploidy and 29 mating system. Self-incompatible polyploid species had larger flowers than self-incompatible 30 diploids but there was no difference for self-compatible species. The breadth of pollination niche 31 (degree of generalism) was not affected by ploidy but rather strongly by mating system only. 32 Self-incompatible species had more stigmas with heterospecific pollen and higher heterospecific 33 pollen morphospecies richness per stigma than self-compatible species, regardless of their 34 ploidy. 35 Conclusions. Our results demonstrate that mating system moderated the influence of ploidy on 36 morphological features associated with pollination generalism but that response in terms of 37 heterospecific pollen captured as a proxy of pollination generalism was more variable.more » « less
-
Irfan, Mohammad (Ed.)Drought is a significant environmental stressor that severely impairs plant growth and agricultural productivity. Unraveling the molecular mechanisms underlying plant responses to drought is crucial for developing crops with enhanced resilience. In this study, we investigated the transcriptomic responses of cultivated tomato (Solanum lycopersicum) and its drought-tolerant wild relative,Solanum pennellii, to identify “stress-ready” gene expression patterns associated with pre-adaptation to arid environments. Through RNA-seq analysis, we identified orthologous genes between the two species and compared their transcriptomic profiles under both control and drought conditions. Approximately 43% of the orthologous genes exhibited species-specific expression patterns, while nearly 20% were classified as stress-ready. These stress-ready genes were significantly enriched for functions related to nucleosome assembly, RNA metabolism, and transcriptional regulation. Furthermore, transcription factor binding motif analysis revealed a marked enrichment of ERF family motifs, emphasizing their role in both stress-ready and species-specific responses. Our findings indicate that regulatory mechanisms, particularly those mediated by ERF transcription factors, are pivotal to the drought resilience ofS. pennellii, providing a foundation for future crop improvement strategies.more » « less
An official website of the United States government
