skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of students’ digital literacy through an immersive university-high school collaboration
IntroductionRecent efforts including the U.S. Department of Education’sRaise the Bar: STEM Excellence for All Students, designed to strengthen Science, Technology, Engineering and Mathematics (STEM) education, typify the development of effective outreach programs implemented in high school settings to increase STEM achievement and literacy and to promote future careers in STEM. Specifically, artificial intelligence (AI) and machine learning (ML) are topics of great importance and interest but are often reserved for higher-level education. Introductions of complex subjects in high school promotes student efficacy, enthusiasm, and skill-development for STEM careers. Establishing strong partnerships between universities and high schools is mutually beneficial for the professional development of students, teachers, and professors. In this paper, we detail immersive outreach efforts and their effectiveness in a high school setting. MethodsFrom Spring 2021 to Spring 2024, we conducted eight data-science and analysis-coding style workshops along with two data science units, with 302 students participating in the data science workshops and 82 students in the data science units. All students who participated in the data science lessons completed a comprehensive final project. Surveys measuring knowledge and appeal to data science and coding were conducted both retrospectively and prospectively, before and after each workshop and the data science units. A 1 year follow up survey was conducted for students in the 2023 data science lessons (n= 23). ResultsOverall, average student interest significantly increased from 2.72 ± 1.08/5.0 (n= 205) to 3.15 ± 1.18/5.0 (n= 181,p= 0.001) during the data science workshops, while 70% of students expressed desire to continue with coding. Interest modestly increased in the data science lessons from 3.15 ± 0.65/4.0 to 3.17 ± 0.77/4.0 (n= 82,p= 0.8571), while knowledge significantly increased from 64.16% to 88.5% (% correct out of six questions) in the 2023 data science lessons and from 52.62% to 60.79% (% correct out of 29 questions) in the 2024 data science lessons. DiscussionIncreasing STEM exposure through outreach programs and a modified curriculum can positively alter students’ career trajectory and prepare them for the evolving technologically advanced world and the careers within it.  more » « less
Award ID(s):
2027456
PAR ID:
10591142
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Education
Volume:
9
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In STEM (science, technology, engineering, and math) fields, people with disabilities are underrepresented. This study aimed to determine what barriers might prevent students with and without disabilities from pursuing STEM careers. Differences in students’ interest in enrolling in advanced STEM courses and having a STEM career were evaluated in a sample of 438 students with (24.9%) and without disabilities (Mage = 15.09, SD = .82) recruited from public high schools in Southeastern United States. Differences in their interest in enrolling in advanced STEM courses and having a STEM career were evaluated. Although students with disabilities report lower interest in enrolling in advanced STEM courses they have the same interest in STEM careers as students without disabilities. Moreover, students with disabilities report higher rates of discrimination and more educational barriers than students without disabilities. Schools should focus on providing specific support to students with disabilities to ensure that their educational experiences are equitable. 
    more » « less
  2. null (Ed.)
    The current state of computer science education has garnered concern across the world as the demand for computer science literacy has grown in professional careers. Computer science is integral to problem solving across the STEM field. Motivated by the need to teach students crucial computer science skills, outreach camps were held for middle and high school students and specifically focused on cybersecurity. This research focused on two main questions: 1. How do week-long outreach activities impact student interest in cybersecurity? 2. How do these activities influence student behavior online? 
    more » « less
  3. Abstract This qualitative exploratory cross‐case analysis analyzed the beliefs and practices of high school counselors related to science, technology, engineering, and mathematics (STEM) academic advisement, postsecondary planning, and career participation. Interviews were conducted with high school counselors (N = 13) who were purposively sampled to represent a diversity of schools in terms of demographic variables. Findings indicated that high school counselors perceived that (a) sociocultural factors influenced student preparation for STEM, career planning, and decision making; (b) students’ STEM‐related career goals and academic behaviors were sometimes misaligned, and academic advisement often mediated this tension; and (c) their professional STEM knowledge, beliefs, and practices were influenced by professional preparation, workplace characteristics, and their academic experiences. Implications include the need for early, sustained high school STEM counseling and academic advisement; accessible professional development in STEM preparation and careers to promote multiple pathways and reduce school counselor bias; and encouraging family involvement in STEM career decision making. 
    more » « less
  4. Abstract To help foster interest in science, technology, engineering, and math (STEM), it is important to develop opportunities that excite and teach young minds about STEM-related fields. Over the past several years, our university-based research group has sought to help grow excitement around the biomechanics and biomedical engineering fields. The purposes of this technical brief are to (1) discuss the development of a partnership built between a St. Louis area high school and biomechanics research lab and (2) provide practical guidance for other researchers looking to implement a long-term outreach program. The partnership uses three different outreach opportunities. The first opportunity consisted of 12th-grade students visiting university research labs for an up-close perspective of ongoing biomedical research. The second opportunity was a biomedical research showcase where research-active graduate students traveled to the high school to perform demonstrations. The third opportunity consisted of a collaborative capstone project where a high school student was able to carry out research directly in a university lab. To date, we have expanded our reach from 19 students to interacting with over 100 students, which has yielded increased interest in STEM related research. Our postprogram survey showed that outreach programs such as the one described herein can increase interest in STEM within all ages of high school students. Building partnerships between high schools and university researchers increases the interest in STEM amongst high school students, and gives graduate students an outlet to present work to an eager-to-learn audience. 
    more » « less
  5. PurposeSupporting community college transfer students represents a critical strategy for broadening participation in STEM. In addition to being a racially diverse group, students who pursue STEM degrees by way of community college report frequent interests in graduate study and academic careers. Thus, supporting and expanding transfer students’ PhD interests can help to diversify the STEM professoriate. This study aims to identify the experiences that predict PhD interests among students who transferred into the computer science major from a community college. Design/methodology/approachRelying on longitudinal survey data from over 150 community college transfer students throughout their first year at their receiving four-year university, we used regression analysis to identify the post-transfer college experiences that predict early interest in PhDs. FindingsWe found that receiving information about PhDs from a professor strongly predicted PhD interest among transfer students. Relationships with other variables indicate that the provision of information about graduate school was more likely to occur for students who participated in undergraduate research experiences than for those participating in internships. Descriptive data document inequities in who has access to these types of experiences. Originality/valueThis paper provides new insight into how STEM departments can develop targeted efforts to ensure that information about PhD training is equitably available to all transfer students. Working to ensure that faculty equitably communicate with students about PhD opportunities may go a long way in countering potential deterrents among transfer students who may be interested in such pathways. 
    more » « less