skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Does Rapamycin Delay Ovarian Aging and Decrease Senescence? A First-ever analysis in a Non-human Primate Model
OBJECTIVE: Rapamycin prolongs reproductive lifespan in mice by halting primordial follicle activation. The impact of rapamycin on the preantral follicle pool and senescence markers during ovarian aging in macaques was evaluated. MATERIALS AND METHODS: One ovary was removed from young (n=2, 6–9 yr) and old (n=2, 17–21 yr) adult female rhesus macaques during a normal menstrual cycle (pre-treatment). The remaining ovary was obtained after animals were treated with rapamycin (bid, IM, 0.02mg/kg) for 10 months. Ovaries were fixed and serially sectioned for follicle counting (each 10th section, 15-39 sections/ovary). Immunohistochemical analyses were performed for anti-Mullerian hormone (AMH) and cellular senescence markers p16, p53, and p21 (1 slide/ovary). Qualitative comparisons were made due to the small sample size. RESULTS: The primordial follicle pool was decreased in young (3,939 pre-treatment vs. 2,219 post-treatment), but similar in old (555 pre- vs. 574 post-treatment) females after rapamycin. The number of transitional primordial follicles was greater before rapamycin than after in both young (14,920 vs. 4,924) and old (1,915 vs. 1,311) females. The number of primary follicles before (2,617) rapamycin was greater than after (560) in young and old females (518 pre- vs. 428 post-treatment). A similar proportion of follicles positive for p16 was seen before and after rapamycin in both young and old females. Similar findings were also observed for AMH, except there are fewer positive follicles in the rapamycin-treated older group. The proportion of follicles staining positive for both p53 and p21 was increased in both young and old monkeys after treatment. CONCLUSIONS: Rapamycin had no impact on the primordial and primary follicle pools in old female macaques while unexpectedly decreasing both pools in young females. While the number of p16-positive follicles was unaffected by rapamycin treatment, the number of p53 and p21-positive follicles was increased by treatment in both age cohorts. IMPACT STATEMENT: At the dose and treatment interval used, rapamycin does not appear to suppress follicular activation and has mixed effects on senescence markers in aging nonhuman primate ovaries.  more » « less
Award ID(s):
2054061
PAR ID:
10591144
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Fertility and Sterility
Volume:
122
Issue:
S
ISSN:
0015-0282
Page Range / eLocation ID:
e344
Subject(s) / Keyword(s):
female reproduction ovary ovarian aging follicle nonhuman primate rhesus macaque
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jeffrey, Peters; Alison, Harrill; Kristine, Willett (Ed.)
    Phthalates are a class of known endocrine-disrupting chemicals that are found in common everyday products. Several studies associate phthalate exposure with detrimental effects on ovarian function, including growth and development of the follicle and production of steroid hormones. We hypothesized that dysregulation of the ovary by phthalates may be mediated by phthalate toxicity towards granulosa cells, a major cell type in ovarian follicles responsible for key steps of hormone production and nourishing the developing oocyte. To test the hypothesis that phthalates target granulosa cells, we harvested granulosa cells from adult CD-1 mouse ovaries and cultured them for 96 h in vehicle control, a phthalate mixture, or a phthalate metabolite mixture (0.1 to 100 μg/ml). After culture, we measured metabolism of the phthalate mixture into monoester metabolites by the granulosa cells, finding that granulosa cells do not significantly contribute to ovarian metabolism of phthalates. Immunohistochemistry of phthalate metabolizing enzymes in whole ovaries confirmed that these enzymes are not strongly expressed in granulosa cells of antral follicles and that ovarian metabolism of phthalates likely occurs primarily in the stroma. RNA sequencing of treated granulosa cells identified 407 differentially expressed genes, with overrepresentation of genes from lipid metabolic processes, cholesterol metabolism, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Expression of significantly differentially expressed genes related to these pathways was confirmed using qPCR. Our results agree with previous findings that phthalates and phthalate metabolites have different effects on the ovary, but both interfere with PPAR signaling in granulosa cells. 
    more » « less
  2. Abstract The cardiovascular system functions under continuous cyclic mechanical stretch, with disruptions in mechanical and biochemical signals contributing to disease progression. In cardiovascular disorders, these disruptions activate cardiac fibroblasts (CFs) and promote cellular senescence, yet it remains unclear whether mechanical stimuli alone can initiate this phenotype. Here, primary murine CFs are exposed to uniaxial stretch, and systematically varied mechanical parameters assessed their role in senescence induction. Loss of stretch magnitude and increase in frequency, mimicking a pathologic hypertrophy and fibrosis, led to a senescence phenotype, identified through cell cycle arrest, decreased lamin B expression, and DNA damage. Mechanically‐induced CF senescence depends on p53/p21, whereas senescence triggered by oxidative stress or lamin A/C mutation proceeded via p16. Notably, mechanically‐induced premature senescence is accompanied by reduced levels of the nuclear envelope protein emerin. These findings demonstrate that altered mechanical signals are sufficient to trigger premature senescence and implicate compromised nuclear integrity in the underlying mechanism. 
    more » « less
  3. Abstract Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells. We used multiplex, single-cell imaging to build a proteomic map of senescence induction in human epithelial cells induced to senescence over the course of 31 days. We map how the expression of SASP proteins increases alongside other known senescence markers such as p53, p21, and p16INK4a. The aggregated population of cells responded to etoposide with an accumulation of stress response factors over the first 11 days, followed by a plateau in most proteins. At the single-cell level, however, we identified two distinct senescence cell populations, one defined primarily by larger nuclear area and the second by higher protein concentrations. Trajectory inference suggested that cells took one of two discrete molecular paths from unperturbed healthy cells, through a common transitional subpopulation, and ending at the discrete terminal senescence phenotypes. Our results underscore the importance of using single-cell proteomics to identify the mechanistic pathways governing the transition from senescence induction to a mature state of senescence characterized by the SASP. 
    more » « less
  4. Ovarian aging in women can be described as highly unpredictable within individuals but predictable across large populations. We showed previously that modeling an individual woman’s ovarian reserve of primordial follicles using mathematical random walks replicates the natural pattern of growing follicles exiting the reserve. Compiling many simulations yields the observed population distribution of the age at natural menopause (ANM). Here, we have probed how stochastic control of primordial follicle loss might relate to the distribution of the preceding menopausal transition (MT), when women begin to experience menstrual cycle irregularity. We show that identical random walk model conditions produce both the reported MT distribution and the ANM distribution when thresholds are set for growing follicle availability. The MT and ANM are shown to correspond to gaps when primordial follicles fail to grow for 7 and 12 days, respectively. Modeling growing follicle supply is shown to precisely recapitulate epidemiological data and provides quantitative criteria for the MT and ANM in humans. 
    more » « less
  5. Di-2-ethylhexyl terephthalate (DEHTP) is a replacement for its structural isomer di-2-ethylhexyl phthalate (DEHP), a known endocrine disrupting chemical and ovarian toxicant. DEHTP is used as a plasticizer in polyvinyl chloride products and its metabolites are increasingly found in biomonitoring studies at levels similar to phthalates. However, little is known about the effects of DEHTP on the ovary. In this research, we tested the hypothesis that DEHTP is an ovarian toxicant and likely endocrine disrupting chemical like its isomer DEHP. The impact of environmentally relevant exposure to DEHTP and/or its metabolite mono-2-ethylhexyl terephthalate (MEHTP) on the mouse ovary was investigated in vivo and in vitro. For the in vivo studies, young adult CD-1 mice were orally dosed with vehicle, 10 µg/kg, 100 µg/kg, or 100 mg/kg of DEHTP for 10 days. For the in vitro studies, isolated untreated ovarian follicles were exposed to vehicle, 0.1, 1, 10, or 100 µg/mL of DEHTP or MEHTP. Follicle counts, hormone levels, and gene expression of steroidogenic enzymes, cell cycle regulators, and apoptosis factors were analyzed. In vivo, DEHTP exposure altered follicle counts compared to control. DEHTP exposure also decreased expression of cell cycle regulators and apoptotic factors compared to control. In vitro, follicle growth was reduced compared to controls, and expression of the cell cycle regulator Cdkn2b was increased. Overall, these results suggest that DEHTP and MEHTP may be ovarian toxicants at low doses and should be subjected to further scrutiny for reproductive toxicity due to their similar structures to phthalates. 
    more » « less