skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 20, 2026

Title: Addressing media and information literacy in engineering design education: Learning to design technologies in the era of science denial and misinformation
Abstract Engineering design entails making value‐laden judgments against ill‐defined, ambiguous, and/or competing sociotechnical criteria. In this article, we argue that such conditions make engineering designers particularly susceptible to the potentially deleterious effects of mis/disinformation in the processes and practices of engineering design, their engagement with people and communities, and in the production and evaluations of the artifacts they produce. We begin by critiquing dominant approaches to engineering design education, specifically, engineering education's social‐technical dualism and the ubiquitous ideology of depoliticization, which has exacerbated the effects of mis/disinformation in engineering design. We follow by outlining a framework for developing students' capacity for mitigating its effects in the specific context of engineering design thinking and making value‐laden engineering judgments and decision‐making. We envision three areas of opportunity for engineering design education to teach students strategies for navigating these challenges when engaging with (a) the processes and practices of engineering, which reflect the unique types of information students engage with across the design process, (b) people and their communities, including the strategic and careful performance of activities for gathering information, while mitigating the harms to misinformation and disinformation and maximizing the benefits of community involvement, and (c) the social and technical criteria of engineering design outcomes in the form of artifacts (e.g., products, processes).  more » « less
Award ID(s):
2239348
PAR ID:
10591227
Author(s) / Creator(s):
; ;
Publisher / Repository:
JRST
Date Published:
Journal Name:
Journal of Research in Science Teaching
ISSN:
0022-4308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This translation tutorial will demonstrate that making fairness a tractable engineering goal requires demarcating a clear conceptual difference between bias and unfairness. Making this distinction demonstrates that bias is a property of technical judgments, whereas fairness is a property of value judgments. With that distinction in place, it is easier to articulate how engineering for fairness is an organizational or social function not reducible to a mathematical description. Using hypothetical and real-life examples I will show how product design practices would benefit from an explicit focus on value-driven decision processes. The upshot of these claims is that designing for fairness (and other ethical commitments) is more tractable if organizations build out capacity for the “soft” aspects of engineering practice. See: https://www.youtube.com/watch?v=y-Dj0cw5OtE&t=7s for the presentation. 
    more » « less
  2. Over the last several years the Electrical and Computer Engineering (ECE) program at Bucknell University has established a four-year ‘design thread’ in the curriculum. This six-course sequence utilizes a representational approach, having students frame design challenges through diagrams and drawings before starting to implement solutions. The representations students create provide eight lenses on the design process; several of these lenses capture elements of societal implications and social justice. Within the design course sequence, the third-year particularly emphasizes the larger societal and human contexts of design. A challenge in the third-year course has been having engineering students who are acculturated to quantitative and linear methods of problem solving shift their perspectives to address complex societal topics. In the social sciences such topics are usually described textually with rich qualitative descriptions. In an attempt to engage engineering students, the authors have utilized graphical design representations rather than textual descriptions into the course. Such representations better align with engineering epistemology, potentially making the large body of work in the social sciences more accessible to students. This paper reports on how a particular representation, the system map, has third-year students explore systemic structures and practices that impact design decisions and processes. Students use system maps to identify ways design projects can impact on society in ways that have both positive and potentially negative consequences. Qualitative analysis of student artifacts over five course iterations was used in an action research approach to refine how to effectively integrate system map representations that capture societal issues and address issues of justice. Action research is an iterative methodology that utilizes evidence to improve practice, in this case the improving students’ facility with, and conceptions of, the societal impact of engineering work. This practice-focused paper reports on how system maps can be used in engineering and what supporting practices, e.g. interviews and research, make their use more effective. Ways to utilize system maps specifically, and representations more generally, to connect technical aspects of engineering design to social justice topics and issues are 
    more » « less
  3. Engineering judgment is critical to both engineering education and engineering practice, and the ability to practice or participate in engineering judgment is often considered central to the formation of professional engineering identities. In practice, engineers must make difficult judgments that evaluate potentially competing objectives, ambiguity, uncertainty, incomplete information, and evolving technical knowledge. Nonetheless, while engineering judgment is implicit in engineering work and so central to identification with the profession, educators and practitioners have few actionable frameworks to employ when considering how to develop and assess this capacity in students. In this paper, we propose a theoretical framework designed to inform both educators and researchers that positions engineering judgment at the intersection of the cognitive dimensions of naturalistic decision-making, and discursive dimensions of identity. Our proposed theory positions engineering judgment not only as an individual capacity practiced by individual engineers alone but also as the capacity to position oneself within the discursive community so as to participate in the construction of engineering judgments among a group of professionals working together. Our theory draws on several strands of existing research to theorize a working framework for engineering judgment that considers the cognitive processes associated with making judgments and the inextricable discursive practices associated with negotiating those judgments in context. In constructing this theory, we seek to provide engineering education practitioners and researchers with a framework that can inform the design of assignments, curricula, or experiences that are intended to foster students’ participation in the development and practice of engineering judgment. 
    more » « less
  4. Gentry, Susan (Ed.)
    “Making’ - a hands-on practice of creating technology-based artifacts typically involves integrating electronics, programming, or 3D printing. This paper describes the targeted infusion of “making” into undergraduate STEM education as an approach to encourage innovation while building capacity in the 21st-century technical STEM skills of engineering and design. “Making’ has the potential to impact self-efficacy and building capacity in technical STEM skills among underrepresented and underserved science majors. To investigate how “making” experiences are received by Underrepresented Minority (URM) students at an Historically Black College or University (HBCU), we applied and received funding through the National Science Foundation HBCU-UP Targeted Infusion Project (TIP) mechanism. The infusion included “making” instructional practices and Course-based Undergraduate Research Experiences (CUREs) into two undergraduate biology courses. Assessment data indicates the targeted - infusion courses were well-received by these communities with females exceling in iteration and communication of engineered designs. 
    more » « less
  5. Abstract Engineering design has been widely implemented in K-12 curricula to cultivate future workforce. In this study, seventh-grade students (N = 38) participated in theSolarizing Your Schoolcurriculum, an action-oriented program where they engaged in engineering design processes to tackle a real-world problem related to renewable energy adoption. The study sought to explore how students balanced constraints and criteria in engineering design. Over a five-day period, seventh-grade students developed plans for adopting solar energy on their school campus and simulated the plan on a technology-enhanced epistemic tool, Aladdin (https://intofuture.org/aladdin.html). Data was collected through design artifacts, log data from design processes, and surveys about their learning experience. Three distinct patterns of balancing design criteria and constraints emerged, including designing for practice, for performance, and for irrelevant goals. The group who designed for practice gave priority to criteria and constraints recorded a higher level of design performance. The study underscores the benefits of integrating action-oriented learning opportunities via engineering design processes in science education. 
    more » « less