To trace the phosphorus (P) and potassium (K) content in flooded rice (Oryza sativa L), 14 rice cultivars commonly grown in the Southern United States were evaluated for their P and K concentration in tissue and grain. Field experiments were conducted at two locations in Everglades Agriculture Area (EAA), where flooded rice was cultivated on organic Histosols. Soil pH and Mehlich-3 phosphorus (M3P) were significantly different between locations. At Site I, soil pH, M3P, and Mehlich-3 potassium (M3K) varied in the range of 6.8–7.1, 21.4–36.4 mg kg−1, and 53.9–151.0 mg kg−1, respectively. At Site II, soil pH, M3P and M3K varied in the range of 6.9–7.3, 11.2–20.5 mg kg−1, and 64.8–104.1 mg kg−1, respectively. Stem potassium was the only measured parameter that was significantly different among rice cultivars at both sites. At Site I and Site II, stem K ranged from 14.2–26.6 mg kg−1 and 10.4–19.4 mg kg−1, respectively. No significant difference in yield among cultivars was observed at Site I, whereas Site II had a significant difference in yield among cultivars. At Site I and Site II, yields ranged from 3745–7587 kg ha−1 and 2627–6406 kg ha−1, respectively. None of the cultivars ranked consistently in the same top and bottom position for each measured parameter. Total phosphorus (TP) concentration was highest in grain, whereas total potassium (TK) concentration was highest in the stem. Results suggest incorporation of rice stem into the soil could potentially add fertilizer back to the soil which helps in fertility management.
more »
« less
Cotton Response to Foliar Potassium Application in South Texas Dryland
Potassium (K) deficiency is common in cotton (Gossypium hirsutum L.)-growing areas. This study aims to investigate the effects of different rates of foliar K fertilizer application on three cotton varieties: NG 5711 B3XF (V1), PHY 480 W3FE (V2), and FM 1953GLTP (V3). Potassium fertilizer was dissolved in water and was foliar-applied at 34, 50, and 67 kg ha−1. Cotton plant height (CH) and canopy width (CW) were monitored throughout the growing season. The results showed that foliar K fertilizer application significantly impacted the CH and CW in dry years. Although insignificant, the cotton lint yield increased by 15% and 20% with 34 and 50 kg ha−1 in 2020 and by 9% and 7% with 50 and 67 kg ha−1 in 2021, indicating the potential for improved lint yield with foliar K application in rainfed production systems. Similarly, variety V3 had significantly greater lint and seed yields than V1 in 2020. The average lint yield among the varieties was 32%, and the seed yield was 27% greater in 2020 than in 2021. The cotton fiber color grade was significantly greater at 50 kg ha−1 in 2020 and 67 kg ha−1 in 2021. Cotton variety significantly affected color grade, uniformity, staple length, Col, RD, and Col-b contents in 2020 and 2021. The results suggest that foliar K application can enhance cotton production in rainfed production systems. However, more research is required to quantify varietal and foliar K application rates for improved lint yield and quality.
more »
« less
- Award ID(s):
- 1914745
- PAR ID:
- 10591264
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Agronomy
- Volume:
- 14
- Issue:
- 10
- ISSN:
- 2073-4395
- Page Range / eLocation ID:
- 2422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Struvite (MgNH4PO4·6H2O) has been precipitated from liquid waste streams to recover valuable nutrients, such as phosphorus (P) and nitrogen (N), that can be used as an alternative fertilizer‐P source. Because prior research has focused on greenhouse studies, it is necessary to expand struvite evaluations to the field‐scale to include row‐crop responses. The objective of this field study was to evaluate the effects of two struvite materials (electrochemically precipitated struvite, ECST; and chemically precipitated struvite, CPST) relative to other common fertilizer‐P sources (diammonium phosphate, DAP; triple superphosphate, TSP; rock phosphate, RP; and monoammonium phosphate, MAP) on soybean [Glycine max(L.) Merr.] response and economics in two consecutive growing seasons in a P‐deficient, silt‐loam soil (Aquic Fraglossudalfs) in eastern Arkansas. Averaged across years, soybean aboveground tissue P uptake was largest (P < .05) from ECST (28.4 kg ha−1), which was similar to CPST (26.7 kg ha−1) and TSP (25.9 kg ha−1) and was smallest from RP (21.4 kg ha−1). In 2019, seed yield was largest (P < .05) from ECST (4.1 Mg ha−1), which was similar to DAP, CPST, RP, TSP, and MAP, and was smallest from the unamended control (3.6 Mg ha−1). In 2020, seed yield was numerically greatest from CPST (2.8 Mg ha−1) and was numerically smallest from ECST (2.2 Mg ha−1). Results showed that wastewater‐recovered struvite materials have the potential to be a viable, alternative fertilizer‐P source for soybean production in a P‐deficient, silt‐loam soil, but further work is needed to confirm struvite's cost effectiveness.more » « less
-
Abstract Yield improvement in cotton could be accelerated through selection for functional yield drivers such as interception of cumulative photosynthetically active radiation (∑IPAR), radiation use efficiency (RUE), and harvest index (HI). However, information on the extent to which these traits vary in cotton in the southeastern United States is limited. It was hypothesized that functional yield drivers would vary significantly within a diverse cotton collection. This study was conducted in Tifton and Athens, GA, and included a total of 4 site‐years. Lint yield, total biomass production, ∑IPAR, RUE, and HI were all affected by genotype. Biomass was more strongly correlated with RUE than ∑IPAR. Even among the highest yielding genotypes, values for functional yield drivers (biomass and harvest index) differed significantly, indicating that high yields could be achieved by differentially manipulating these underlying traits. However, when considered for all genotypes, only HI exhibited a significant positive correlation with yield. Boll production and intra‐boll yield components were also affected by genotype. When considered across upland genotypes, lint per boll, lint per seed, and lint percent were strongly associated with HI and lint yield, whereas boll mass and seed number per boll were not. We conclude that the genotypes evaluated in the current study achieve high lint production per boll and lint yields by manipulating different yield drivers. However, lint yield was primarily maximized through an increase in HI due to increases in boll production and within‐boll distribution of biomass to fiber, not due to increases in total biomass production or boll size.more » « less
-
Abstract Calcium (Ca) is a critical plant nutrient typically applied at the time of planting in intensive Eucalyptus plantations in South America. At two sites in Colombia, we examined (1) calcium source by comparing growth after application of 100 kg ha−1 elemental Ca as lime or as pelletized highly reactive calcium fertilizer (HRCF) compared to a no application control, and (2) Ca rate by applying 0, 100, 200, and 400 kg ha−1 elemental Ca as HRCF with the addition of nitrogen, phosphorus, potassium, sulfur, and boron (NPKSB). We assessed height, diameter, and volume after 12 and 24 months. There were no growth differences from Ca source at the 100 kg ha−1 rate. We found increased volume after 24 months at the “Popayan” site with 200 and 400 kg ha−1 Ca HRCF+NPKSB treatments (112 and 113 m3 ha−1, respectively) compared to control (92 m3 ha−1), a 22% increase. In contrast, volume did not differ after 24 months at the “Darien” site, ranging from 114 m3 ha−1 in the 0 kg ha−1 Ca HRCF+NPKSB treatment to 98 m3 ha−1 in the control. Differences in response are likely due to soil characteristics, such as organic matter, emphasizing the importance of identifying site-specific nutrient deficiencies.more » « less
-
At two sites in the North Central USA (Michigan (KBS) and Wisconsin (ARL)), we evaluated the effect of N fertilization on the yield and quality of five perennial bioenergy feedstock cropping systems: (1) switchgrass (Panicum virgatum L.), (2) giant miscanthus (Miscanthus × giganteus), (3) a native grass mixture (5 species), (4) an early successional field (volunteer herbaceous species), and (5) a restored prairie (18 species). In a randomized complete block design with 5 replicates and 2 split plots, N was applied at 0 and 56 kg ha−1 to split plots for each cropping system from 2010 to 2016. No yield response to N was detected in switchgrass at either location in any year. Giant miscanthus exhibited a positive yield response to N at both sites (11% at KBS and 83% at ARL). Nitrogen fertilizer addition significantly reduced glucose (KBS 12.9 and 13.8 g kg−1 year−1, ARL 11.2 and 9.7 g kg−1 year−1) in the native grass mix and restored prairie systems respectively. Nitrogen fertilizer also reduced xylose at KBS in the switchgrasss, native grass mix, and restored prairie (4.9, 7.5, and 5.0 g kg−1 year−1). At ARL, N fertilization reduced xylose levels in switchgrass, giant miscanthus, and restored prairie (7.4, 6.8, and 6.2 g kg−1 year−1) and increased xylose levels in the early successional system (5.0 g kg−1 year−1).more » « less
An official website of the United States government

