skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Expanding the toolkit for ploidy manipulation in Chlamydomonas reinhardtii
Summary Whole‐genome duplications, widely observed in plant lineages, have significant evolutionary and ecological impacts. Yet, our current understanding of the direct implications of ploidy shifts on short‐ and long‐term plant evolution remains fragmentary, necessitating further investigations across multiple ploidy levels.Chlamydomonas reinhardtiiis a valuable model organism with profound potential to study the impact of ploidy increase on the longer term in a laboratory environment. This is partly due to the ability to increase the ploidy level.We developed a strategy to engineer ploidy inC. reinhardtiiusing noninterfering, antibiotic, selectable markers. This approach allows us to induce higher ploidy levels inC. reinhardtiiand is applicable to field isolates, which expands beyond specific auxotroph laboratory strains and broadens the genetic diversity of parental haploid strains that can be crossed. We implement flow cytometry for precise measurement of the genome size of strains of different ploidy.We demonstrate the creation of diploids, triploids, and tetraploids by engineering North American field isolates, broadening the application of synthetic biology principles inC. reinhardtii. However, our newly formed triploids and tetraploids show signs of rapid aneuploidization.Our study greatly facilitates the application ofC. reinhardtiito study polyploidy, in both fundamental and applied settings.  more » « less
Award ID(s):
2320251
PAR ID:
10591396
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
New Phytologist Foundation
Date Published:
Journal Name:
New Phytologist
Volume:
246
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
1403 to 1412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well‐understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression.We employedChlamydomonas reinhardtiias a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line. Five independent clonal lineages derived from this triploid line were evolved for 425 asexual generations in a laboratory natural selection experiment.Utilizing fitness assays, flow cytometry, and RNA‐Seq, we assessed the immediate consequences of genome merging and subsequent evolution. Our findings reveal substantial alterations in genome size, gene expression, protein homeostasis, and cytonuclear stoichiometry. Gene expression exhibited expression‐level dominance and transgressivity (i.e. expression level higher or lower than either parent). Ongoing expression‐level dominance and a pattern of ‘functional dominance’ from the haploid parent was observed.Despite major genomic and nucleo‐cytoplasmic disruptions, enhanced fitness was detected in the triploid strain. By comparing gene expression across generations, our results indicate that proteostasis restoration is a critical component of rapid adaptation following genome merging inChlamydomonas reinhardtiiand possibly other systems. 
    more » « less
  2. Abstract Ploidy level in plants may influence ecological functioning, demography and response to climate change. However, measuring ploidy level typically requires intensive cell or molecular methods.We map ploidy level variation in quaking aspen, a dominant North American tree species that can be diploid or triploid and that grows in spatially extensive clones. We identify the predictors and spatial scale of ploidy level variation using a combination of genetic and ground‐based and airborne remote sensing methods.We show that ground‐based leaf spectra and airborne canopy spectra can both classify aspen by ploidy level with a precision‐recall harmonic mean of 0.75–0.95 and Cohen's kappa ofc.0.6–0.9. Ground‐based bark spectra cannot classify ploidy level better than chance. We also found that diploids are more common on higher elevation and steeper sites in a network of forest plots in Colorado, and that ploidy level distribution varies at subkilometer spatial scales.Synthesis. Our proof‐of‐concept study shows that remote sensing of ploidy level could become feasible in this tree species. Mapping ploidy level across landscapes could provide insights into the genetic basis of species' responses to climate change. 
    more » « less
  3. ABSTRACT Successful cell division requires faithful division and segregation of organelles into daughter cells. The unicellular algaChlamydomonas reinhardtiihas a single, large chloroplast whose division is spatiotemporally coordinated with furrowing. Cytoskeletal structures form in the same plane at the midzone of the dividing chloroplast (FtsZ) and the cell (microtubules), but how these structures are coordinated is not understood. Previous work showed that loss of F-actin blocks chloroplast division but not furrow ingression, suggesting that pharmacological perturbations can disorganize these events. In this study, we developed an imaging platform to screen natural compounds that perturb cell division while monitoring FtsZ and microtubules and identified 70 unique compounds. One compound, curcumin, has been proposed to bind to both FtsZ and tubulin proteins in bacteria and eukaryotes, respectively. InC. reinhardtii,where both targets coexist and are involved in cell division, curcumin at a specific dose range caused a severe disruption of the FtsZ ring in chloroplast while leaving the furrow-associated microtubule structures largely intact. Time-lapse imaging showed that loss of FtsZ and chloroplast division failure delayed the completion of furrowing but not the initiation, suggesting that the chloroplast-division checkpoint proposed in other algae requires FtsZ or is absent altogether inC. reinhardtii. SIGNIFICANCE STATEMENTSuccessful cell division requires the coordination of both organelle inheritance and cytokinesis. The unicellular algaChlamydomonas reinhardtii, which spatiotemporally coordinates the division of its chloroplast with cytokinesis, is an excellent model to study the regulation.We screened libraries of natural compounds for perturbations of cell and/or chloroplast division, identifying 70 unique chemicals. By time-lapse microscopy using one of the hits, curcumin, we demonstrate that although chloroplast division failures delay the completion of cytokinesis, it does not impair initiation.These findings suggest that the chloroplast-division checkpoint proposed in other algae requires FtsZ or is absent altogether inC. reinhardtii. 
    more » « less
  4. Summary The fungal pathogen,Magnaporthe oryzae Triticumpathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents.Magnaporthe oryzaestrains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole‐genome sequences.We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini‐chromosome. Genome assembly of a Zambian strain revealed that its mini‐chromosome was similar to the B71 mini‐chromosome but with a high level of structural variation.Our findings show that while core genomes of the multiple introductions are highly similar, the mini‐chromosomes have undergone marked diversification. The maintenance of the mini‐chromosome and rapid genomic changes suggest the mini‐chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions. 
    more » « less
  5. Summary Sphagnumpeatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long‐term storage of atmospheric carbon. Warming threatensSphagnummosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance.We leveraged an experimental whole‐ecosystem warming study to collect field‐grownSphagnum, mechanically separate the associated microbiome and then transfer onto germ‐free laboratorySphagnumfor temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chlafluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling.Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm‐microbiome isolated from the field provided the host plant with thermal preconditioning.Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments. 
    more » « less