skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Adiabatic conversion of ALPs into dark photon dark matter
A<sc>bstract</sc> We introduce a mechanism by which a misaligned ALP can be dynamically converted into a dark photon in the presence of a background magnetic field. An abundance of non-relativistic ALPs will convert to dark photons with momentum of order the inhomogeneities in the background field; therefore a highly homogeneous field will produce non-relativistic dark photons without relying on any redshifting of their momenta. Taking hidden sector magnetic fields produced by a first order phase transition, the mechanism can reproduce the relic abundance of dark matter for a wide range of dark photon masses down to 10−13eV.  more » « less
Award ID(s):
2210361
PAR ID:
10591402
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> One contribution to any dark sector’s abundance comes from its gravitational production during inflation. If the dark sector is weakly coupled to the inflaton and the Standard Model, this can be its only production mechanism. For non-interacting dark sectors, such as a free massive fermion or a free massive vector field, this mechanism has been studied extensively. In this paper we show, via the example of dark massive QED, that the presence of interactions can result in a vastly different mass for the dark matter (DM) particle, which may well coincide with the range probed by upcoming experiments. In the context of dark QED we study the evolution of the energy density in the dark sector after inflation. Inflation produces a cold vector condensate consisting of an enormous number of bosons, which via interesting processes — Schwinger pair production, strong field electromagnetic cascades, and plasma dynamics — transfers its energy to a small number of “dark electrons” and triggers thermalization of the dark sector. The resulting dark electron DM mass range is from 50 MeV to 30 TeV, far different from both the 10−5eV mass of the massive photon dark matter in the absence of dark electrons, and from the 109GeV dark electron mass in the absence of dark photons. This can significantly impact the search strategies for dark QED and, more generally, theories with a self-interacting DM sector. In the presence of kinetic mixing, a dark electron in this mass range can be searched for with upcoming direct detection experiments, such as SENSEI-100g and OSCURA. 
    more » « less
  2. Abstract A phase shift in the acoustic oscillations of cosmic microwave background (CMB) spectra is a characteristic signature for the presence of non-photon radiation propagating differently from photons, even when the radiation couples to the Standard Model particles solely gravitationally. It is well-established that compared to the presence of free-streaming radiation, CMB spectra shift to higherℓ-modes in the presence of self-interacting non-photon radiation such as neutrinos and dark radiation. In this study, we further demonstrate that the scattering of non-photon radiation with dark matter can further amplify this phase shift. We show that when the energy density of the interacting radiation surpasses that of interacting dark matter around matter-radiation equality, the phase shift enhancement is proportional to the interacting dark matter abundance and remains insensitive to the radiation energy density. Given the presence of dark matter-radiation interaction, this additional phase shift emerges as a generic signature of models featuring an interacting dark sector or neutrino-dark matter scattering. Using neutrino-dark matter scattering as an example, we numerically calculate the amplified phase shift and offer an analytical interpretation of the result by modeling photon and neutrino perturbations with coupled harmonic oscillators. This framework also explains the phase shift contrast between self-interacting and free-streaming neutrinos. Fitting models with neutrino-dark matter or dark radiation-dark matter interactions to CMB and large-scale structure data, we validate the presence of the enhanced phase shift, affirmed by the linear dependence observed between the preferred regions of the sound horizon angleθsand interacting dark matter abundance. An increasedθsand a suppressed matter power spectrum is therefore a generic feature of models containing dark matter scattering with abundant dark radiation. 
    more » « less
  3. A<sc>bstract</sc> We discuss the dynamics of expanding bubble walls in the presence of massive dark photons whose mass changes as they cross the wall. For sufficiently thin walls, we show that there exists a transient kinematic regime characterized by a constant reflection probability of longitudinal — but not transverse — modes. This effect can have important implications for the dynamics of expanding vacuum bubbles in the early Universe. Most notably, it leads to a new source of pressure on the expanding interface, featuring a non-monotonic dependence on theγ-factor of the bubble walls and reaching a peak at intermediateγ-factors that we dub Maximum Dynamic Pressure. When this pressure is large enough to halt the acceleration of the bubble walls, the difference in vacuum energy densities goes into making a fraction of the dark photons relativistic, turning them into dark radiation. If the dark radiation remains relativistic until late times, an observable contribution to ∆Neffis possible for phase transitions with strengthα∼ 10−2−10−1
    more » « less
  4. A<sc>bstract</sc> The presence of a plethora of light spin 0 and spin 1 fields is motivated in a number of BSM scenarios, such as the axiverse. The study of the interactions of such light bosonic fields with the Standard Model has focused mostly on interactions involving only one such field, such as the axion (ϕ) coupling to photons,$$\phi F\widetilde{F}$$, or the kinetic mixing between photon and the dark photon,FFD. In this work, we continue the exploration of interactions involving two light BSM fields and the standard model, focusing on the mixed axion-photon-dark-photon interaction$$\phi F{\widetilde{F}}_{D}$$. If either the axion or dark photon are dark matter, we show that this interaction leads to conversion of the CMB photons into a dark sector particle, leading to a distortion in the CMB spectrum. We present the details of these unique distortion signatures and the resulting constraints on the$$\phi F{\widetilde{F}}_{D}$$coupling. In particular, we find that for a wide range of masses, the constraints from these effect are stronger than on the more widely studied axion-photon coupling. 
    more » « less
  5. A<sc>bstract</sc> This paper describes a search for dark photons (γd) in proton-proton collisions at$$ \sqrt{s} $$ s = 13 TeV at the Large Hadron Collider (LHC). The dark photons are searched for in the decay of Higgs bosons (H→γγd) produced through theZHproduction mode. The transverse mass of the system, made of the photon and the missing transverse momentum from the non-interactingγd, presents a distinctive signature as it peaks near the Higgs boson mass. The results presented use the total Run-2 integrated luminosity of 139 fb−1recorded by the ATLAS detector at the LHC. The dominant reducible background processes are estimated using data-driven techniques. A Boosted Decision Tree technique is adopted to enhance the sensitivity of the search. As no excess is observed with respect to the Standard Model prediction, an observed (expected) upper limit on the branching ratio BR(H→γγd) of 2.28% ($$ {2.82}_{-0.84}^{+1.33}\% $$ 2.82 0.84 + 1.33 % ) is set at 95% CL for masslessγd. For massive dark photons up to 40 GeV, the observed (expected) upper limits on BR(H→γγd) at 95% confidence level is found within the [2.19,2.52]% ([2.71,3.11]%) range. 
    more » « less