skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Helioseismic inference of the solar radiative opacity
The Sun is the most studied of all stars, and thus constitutes a benchmark for stellar models. However, our vision of the Sun is still incomplete, as illustrated by the current debate on its chemical composition. The problem reaches far beyond chemical abundances and is intimately linked to microscopic and macroscopic physical ingredients of solar models such as radiative opacity, for which experimental results have been recently measured that still await the- oretical explanations. We present opacity profiles derived from helioseismic inferences and compare them with detailed theoretical computations of individual element contributions using three different opacity computation codes, in a complementary way to experimental results. We find that our seismic opacity is about 10% higher than theoretical values used in current solar models around 2 million degrees, but lower by 35% than some recent available theoretical values. Using the Sun as a laboratory of fundamental physics, we show that quantitative comparisons between various opacity tables are required to understand the origin of the discrepancies between reported helioseismic, theoretical and experimental opacity values.  more » « less
Award ID(s):
2407470
PAR ID:
10591425
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range toZ= 10−6toZ= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity rangeZ= 10−4toZ= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions betweenX= 0 andX= 0.1 includingX= 10−2, 10−3, 10−4, 10−5, 10−6that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables inMESAand find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity. 
    more » « less
  2. Helioseismic response to solar flares ("sunquakes") occurs due to localized force or/and momentum impacts observed during the flare impulsive phase in the lower atmosphere. Such impacts may be caused by precipitation of high-energy particles, downward shocks, or magnetic Lorentz force. Understanding the mechanism of sunquakes is a key problem of the flare energy release and transport. Our statistical analysis of M-X class flares observed by the Solar Dynamics Observatory during Solar Cycle 24 has shown that contrary to expectations, many relatively weak M-class flares produced strong sunquakes, while for some powerful X-class flares, helioseismic waves were not observed or were weak. The analysis also revealed that there were active regions characterized by the most efficient generation of sunquakes during the solar cycle. We found that the sunquake power correlates with maximal values of the X-ray flux derivative better than with the X-ray class. The sunquake data challenge the current theories of solar flares. 
    more » « less
  3. olar elemental abundances, or solar system elemental abundances refer to the complement of chemical elements in the entire solar system. The sun contains more than 99-percent of the mass in the solar system and therefore the composition of the sun is a good proxy for the composition of the overall solar system. The solar system composition can be taken as the overall composition of the molecular cloud within the interstellar medium from which the solar system formed 4.567 billion years ago. Active research areas in astronomy and cosmochemistry model collapse of a molecular cloud of solar composition into a star with a planetary system, and the physical and chemical fractionation of the elements during planetary formation and differentiation. The solar system composition is the initial composition from which all solar system objects (the sun, terrestrial planets, gas giant planets, planetary satellites and moons, asteroids, Kuiper-belt objects, and comets) were derived. Other dwarf stars (with hydrostatic Hydrogen-burning in their cores) like our Sun (type G2V dwarf star) within the solar neighborhood have compositions similar to our Sun and the solar system composition. In general, differential comparisons of stellar compositions provide insights about stellar evolution as functions of stellar mass and age, and ongoing nucleosynthesis; but also about galactic chemical evolution when elemental compositions of stellar populations across our Milky Way Galaxy is considered. Comparisons to solar composition can reveal element destruction (e.g., Li) in the sun and in other dwarf stars. The comparisons also show element production of e.g., C, N, O, and the heavy elements made by the s-process in low- to intermediate mass stars (3-7 solar masses) after these evolved from their dwarf-star stage into red giant stars (where hydrogen and helium burning can occur in shells around their cores). The solar system abundances are and have been a critical test composition for nucleosynthesis models and models of Galactic chemical evolution, which aim ultimately to track the production of the elements heavier than hydrogen and helium in the generation of stars that came forth after the Big Bang 13.4 billion years ago. Article at: https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-145 
    more » « less
  4. Context. The γ -process nucleosynthesis in core-collapse supernovae is generally accepted as a feasible process for the synthesis of neutron-deficient isotopes beyond iron. However, crucial discrepancies between theory and observations still exist: the average yields of γ -process nucleosynthesis from massive stars are still insufficient to reproduce the solar distribution in galactic chemical evolution calculations, and the yields of the Mo and Ru isotopes are a factor of ten lower than the yields of the other γ -process nuclei. Aims. We investigate the γ -process in five sets of core-collapse supernova models published in the literature with initial masses of 15, 20, and 25 M ⊙ at solar metallicity. Methods. We compared the γ -process overproduction factors from the different models. To highlight the possible effect of nuclear physics input, we also considered 23 ratios of two isotopes close to each other in mass relative to their solar values. Further, we investigated the contribution of C–O shell mergers in the supernova progenitors as an additional site of the γ -process. Results. Our analysis shows that a large scatter among the different models exists for both the γ -process integrated yields and the isotopic ratios. We find only ten ratios that agree with their solar values, all the others differ by at least a factor of three from the solar values in all the considered sets of models. The γ -process within C–O shell mergers mostly influences the isotopic ratios that involve intermediate and heavy proton-rich isotopes with A  > 100. Conclusions. We conclude that there are large discrepancies both among the different data sets and between the model predictions and the solar abundance distribution. More calculations are needed; particularly updating the nuclear network, because the majority of the models considered in this work do not use the latest reaction rates for the γ -process nucleosynthesis. Moreover, the role of C–O shell mergers requires further investigation. 
    more » « less
  5. Abstract Understanding the mechanisms underlying the heating of the solar atmosphere is a fundamental problem in solar physics. The lower atmosphere of the Sun (i.e., photosphere and chromosphere) is composed of weakly ionized plasma. This results in anisotropic dissipation of electric currents by Coulomb and Cowling resistivities. Joule heating due to dissipation of currents perpendicular to the magnetic field by Cowling resistivity has been demonstrated to be the main mechanism for the heating of a sunspot umbral light bridge located in NOAA AR 12002 on 2014 March 13. Here, we focus on the same target region and demonstrate the importance of further constraining our Joule heating model using observational data in addition to magnetic field, namely plasma temperature calculated from the inversion of spectroscopic data obtained from the Interferometric BI-dimensional Spectrometer instrument of the ground-based Dunn Solar Telescope. As a parameter in our analysis, temperature is demonstrated to have the highest sensitivity after magnetic field. We show that the heating of the light bridge is a highly dynamic event that necessitates utilization of 3D spatially resolved observational data for temperature rather than a 1D temperature stratification based on theoretical/semiempirical solar atmosphere models. Our improved data-constrained analysis using spatially resolved temperatures shows that the entire light bridge is heated by the proposed mechanism, and yields heating rate values that are consistent with our previous study. 
    more » « less