Abstract In this review, recent research efforts that aimed at developing nanopore sensors for detection of metal ions, which play a crucial role in environmental safety and human health, are highlighted. Protein pores use three stochastic sensing‐based strategies for metal ion detection. The first strategy is to construct engineered nanopores with metal ion binding sites, so that the interaction between the target analytes and the nanopore can slow the movement of metal ions in the nanochannel. Second, large molecules such as nucleic acids and especially peptides can be utilized as external selective molecular probes to detect metal ions based on the conformational change of the ligand molecules induced by the metal ion–ligand chelation/coordination interaction. Third, enzymatic reactions can also be used as an alternative to the molecule probe strategy in the situation that a sensitive and selective probe molecule for the target analyte is difficult to obtain. On the other hand, by taking advantage of steady‐state analysis, synthetic nanopores mainly use two strategies (modification and modification‐free) to detect metals. Given the advantages of high sensitivity and selectivity, and label‐free detection, nanopore‐based metal ion sensors should find useful application in many fields, including environmental monitoring, medical diagnosis, and so on.
more »
« less
This content will become publicly available on April 1, 2026
Nanopore Detection of Small Molecules Based on Replacement and Complexation Chemical Interactions
Abstract Small molecules play important roles in a variety of biological processes such as metabolism, cell signaling and enzyme regulation, and can serve as valuable biomarkers for human diseases. Moreover, they are essential to drug discovery and development, and are important targets for environmental monitoring and food safety. Due to the size incompatibility, small molecule transport is difficult to be monitored with a nanopore. A popular strategy for nanopore detection of small molecules is to introduce a molecular probe as a ligand (or recognition element) and rely on their effect on the ligand transport. One limitation for this sensing strategy is that the probe molecule needs to have a slightly smaller size than the nanopore constriction or can be easily unfolded or unzipped through the pore. Herein, by taking advantage of replacement and complexation chemical interactions, a generic approach is reported for detection of small molecules by using large biomolecules with well‐defined stable 3D structures such as aptamers as recognition elements. Given the versatile use of aptamers as capture agents for a wide variety of species, the developed nanopore sensing strategy should find applications in many fields.
more »
« less
- Award ID(s):
- 2345813
- PAR ID:
- 10591488
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Small
- Volume:
- 21
- Issue:
- 15
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor‐intensive to develop aptamer‐based sensors for small‐molecule detection. Here, we review the challenges and advances in the isolation and characterization of small‐molecule‐binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer–target binding and structure. Afterwards, we discuss various small‐molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer‐based small‐molecule sensors for real‐world applications.more » « less
-
Iron is an essential element that plays critical roles in many biological/metabolic processes, ranging from oxygen transport, mitochondrial respiration, to host defense and cell signaling. Maintaining an appropriate iron level in the body is vital to the human health. Iron deficiency or overload can cause life-threatening conditions. Thus, developing a new, rapid, cost-effective, and easy to use method for iron detection is significant not only for environmental monitoring but also for disease prevention. In this study, we report an innovative Fe3+ detection strategy by using both a ligand probe and an engineered nanopore with two binding sites. In our design, one binding site of the nanopore has a strong interaction with the ligand probe, while the other is more selective toward interfering species. Based on the difference in the number of ligand DTPMPA events in the absence and presence of ferric ions, micromolar concentrations of Fe3+ could be detected within minutes. Our method is selective: micromolar concentrations of Mg2+, Ca2+, Cd2+, Zn2+, Ni2+, Co2+, Mn2+, and Cu2+ would not interfere with the detection of ferric ions. Furthermore, Cu2+, Ni2+, Co2+, Zn2+, and Mn2+ produced current blockage events with quite different signatures from each other, enabling their simultaneous detection. In addition, simulated water and serum samples were successfully analyzed. The nanopore sensing strategy developed in this work should find useful application in the development of stochastic sensors for other substances, especially in situations where multi-analyte concurrent detection is desired.more » « less
-
Antibodies are important biomolecules that are often designed to recognize target antigens. However, they are expensive to produce and their relatively large size prevents their transport across lipid membranes. An alternative to antibodies is aptamers, short ([Formula: see text] bp) oligonucleotides (and amino acid sequences) with specific secondary and tertiary structures that govern their affinity to specific target molecules. Aptamers are typically generated via solid phase oligonucleotide synthesis before selection and amplification through Systematic Evolution of Ligands by EXponential enrichment (SELEX), a process based on competitive binding that enriches the population of certain strands while removing unwanted sequences, yielding aptamers with high specificity and affinity to a target molecule. Mathematical analyses of SELEX have been formulated in the mass action limit, which assumes large system sizes and/or high aptamer and target molecule concentrations. In this paper, we develop a fully discrete stochastic model of SELEX. While converging to a mass-action model in the large system-size limit, our stochastic model allows us to study statistical quantities when the system size is small, such as the probability of losing the best-binding aptamer during each round of selection. Specifically, we find that optimal SELEX protocols in the stochastic model differ from those predicted by a deterministic model.more » « less
-
null (Ed.)Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.more » « less
An official website of the United States government
