skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 22, 2025

Title: For exotic surfaces with boundary, one stabilization is not enough
Works of Hosokawa–Kawauchi (1979) and Baykur–Sunukjian (2016) show that homologous surfaces in a 4-manifold become isotopic after a finite number of internal stabilizations, i.e., attaching tubes to the surfaces. A natural question is how many stabilizations are needed before the surfaces become isotopic. In particular, given an exotic pair of surfaces, is a single stabilization always enough to make the pair smoothly isotopic? We answer this question by studying how the stabilization distance between surfaces with boundary changes with respect to satellite operations. Using a range of Floer theoretic techniques, we show that there are exotic disks in the 4-ball which have arbitrarily large stabilization distance, giving the first examples of exotic behavior in the 4-ball for which “one is not enough”.  more » « less
Award ID(s):
2204214
PAR ID:
10591494
Author(s) / Creator(s):
Publisher / Repository:
European Mathematical Society
Date Published:
Journal Name:
Journal of the European Mathematical Society
ISSN:
1435-9855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider the set of connected surfaces in the 4‐ball with boundary a fixed knot in the 3‐sphere. We define the stabilization distance between two surfaces as the minimal such that we can get from one to the other using stabilizations and destabilizations through surfaces of genus at most . Similarly, we consider a double‐point distance between two surfaces of the same genus that is the minimum over all regular homotopies connecting the two surfaces of the maximal number of double points appearing in the homotopy. To many of the concordance invariants defined using Heegaard Floer homology, we construct an analogous invariant for a pair of surfaces. We show that these give lower bounds on the stabilization distance and the double‐point distance. We compute our invariants for some pairs of deform‐spun slice disks by proving a trace formula on the full infinity knot Floer complex, and by determining the action on knot Floer homology of an automorphism of the connected sum of a knot with itself that swaps the two summands. We use our invariants to find pairs of slice disks with arbitrarily large distance with respect to many of the metrics we consider in this paper. We also answer a slice‐disk analog of Problem 1.105 (B) from Kirby's problem list by showing the existence of non‐0‐cobordant slice disks. 
    more » « less
  2. This paper investigates the exotic phenomena exhibited by links of disconnected surfaces with boundary that are properly embedded in the 4-ball. Our main results provide two different constructions of exotic pairs of surface links that are Brunnian, meaning that all proper sublinks of the surface are trivial. We then modify these core constructions to vary the number of components in the exotic links, the genera of the components, and the number of components that must be removed before the surfaces become unlinked. Our arguments extend two tools from 3-dimensional knot theory into the 4-dimensional setting: satellite operations, especially Bing doubling, and covering links in branched covers. 
    more » « less
  3. From a handle-theoretic perspective, the simplest contractible 4-manifolds, other than the 4-ball, are Mazur manifolds. We produce the first pairs of Mazur manifolds that are homeomorphic but not diffeomorphic. Our diffeomorphism obstruction comes from our proof that the knot Floer homology concordance invariant ν is an invariant of the trace of a knot, i.e. the smooth 4-manifold obtained by attaching a 2-handle to the 4-ball along K. This provides a computable, integer-valued diffeomorphism invariant that is effective at distinguishing exotic smooth structures on knot traces and other simple 4-manifolds, including when other adjunction-type obstructions are ineffective. We also show that the concordance invariants τ and ϵ are not knot trace invariants. As a corollary to the existence of exotic Mazur manifolds, we produce integer homology 3-spheres admitting two distinct surgeries to $$S^1 \times S^2$$, resolving a question from Problem 1.16 in Kirby's list. 
    more » « less
  4. Abstract We show that the cobordism maps on Khovanov homology can distinguish smooth surfaces in the 4-ball that are exotically knotted (i.e., isotopic through ambient homeomorphisms but not ambient diffeomorphisms).We develop new techniques for distinguishing cobordism maps on Khovanov homology, drawing on knot symmetries and braid factorizations.We also show that Plamenevskaya’s transverse invariant in Khovanov homology is preserved by maps induced by positive ascending cobordisms. 
    more » « less
  5. Abstract We define several equivariant concordance invariants using knot Floer homology. We show that our invariants provide a lower bound for the equivariant slice genus and use this to give a family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answering a question of Boyle and Issa. We also apply our formalism to several seemingly nonequivariant questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell regarding stabilization distance. Our formalism suggests a possible route toward establishing the noncommutativity of the equivariant concordance group. 
    more » « less