Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins.
more »
« less
This content will become publicly available on April 29, 2026
Role of glucuronoxylomannan and steryl glucosides in protecting against cryptococcosis
ABSTRACT The development of vaccines for fungal diseases, including cryptococcosis, is an emergent line of research and development. In previous studies, we showed that aCryptococcusmutant lacking theSGL1gene (∆sgl1) accumulates certain glycolipids called steryl glucosides (SGs) on the fungal capsule, promoting an effective immunostimulation that totally protects the host from a secondary cryptococcal infection. However, this protection is lost when the cryptococcal capsule is absent in the∆sgl1background. The cryptococcal capsule is mainly composed of glucuronoxylomannan (GXM), a polysaccharide microfiber consisting of glucuronic acid, xylose, and mannose linked by glycosidic bonds forming specific triads. In this study, we engineered cells to lack each of the GXM components and tested the effect of these deletions on protection under the condition of SG accumulation. We found that glucuronic acid and xylose are required for protection, and their absence abrogates the production of IFNγ and IL-17A by γδ T cells, which are necessary stimulants for the protective phenotype of the∆sgl1. We analyzed the structure of the GXM microfibers and found that although the deletion ofSGL1only slightly affects the size and distribution of these microfibers, it significantly changes the ratio of mannose to other components. In conclusion, this study identifies the structural modifications that the deletion ofSGL1and the consequent accumulation of SGs impart to the GXM structure ofC. neoformans. This provides significant insights into the protective mechanisms mediated by SG accumulation on the capsule, with important implications for the future development of an efficacious cryptococcal vaccine.IMPORTANCECryptococcus neoformansis an encapsulated fungus that causes invasive fungal infections with high morbidity and mortality in susceptible patients. With increasing drug resistance and high toxicity of current antifungal drugs, there is a need for alternative therapeutic strategies, such as a cryptococcal vaccine. In this study, we identify the necessary capsular components and their structural organization required for a cryptococcal vaccine to protect the host against challenge with a virulent strain. These capsular components are glucuronic acid, xylose, and mannose, and they work together with certain glycolipids called steryl glucosides (SGs) to stimulate host immunity. Interestingly, SGs on the capsule may favor the formation of small capsular microfibers organized in specific mannose triads. Thus, the results of this paper are important because they identify a mechanism by which SGs affect the structure of the cryptococcal capsule, with important implications for the future development of a cryptococcal vaccine using capsular components and SGs.
more »
« less
- Award ID(s):
- 1905547
- PAR ID:
- 10591626
- Editor(s):
- Alspaugh, J Andrew
- Publisher / Repository:
- American Society of Microbiology
- Date Published:
- Journal Name:
- mBio
- ISSN:
- 2150-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundCost-effective production of biofuels from lignocellulose requires the fermentation ofd-xylose. Many yeast species within and closely related to the generaSpathasporaandScheffersomyces(both of the order Serinales) natively assimilate and ferment xylose. Other species consume xylose inefficiently, leading to extracellular accumulation of xylitol. Xylitol excretion is thought to be due to the different cofactor requirements of the first two steps of xylose metabolism. Xylose reductase (XR) generally uses NADPH to reduce xylose to xylitol, while xylitol dehydrogenase (XDH) generally uses NAD+to oxidize xylitol to xylulose, creating an imbalanced redox pathway. This imbalance is thought to be particularly consequential in hypoxic or anoxic environments. ResultsWe screened the growth of xylose-fermenting yeast species in high and moderate aeration and identified both ethanol producers and xylitol producers. Selected species were further characterized for their XR and XDH cofactor preferences by enzyme assays and gene expression patterns by RNA-Seq. Our data revealed that xylose metabolism is more redox balanced in some species, but it is strongly affected by oxygen levels. Under high aeration, most species switched from ethanol production to xylitol accumulation, despite the availability of ample oxygen to accept electrons from NADH. This switch was followed by decreases in enzyme activity and the expression of genes related to xylose metabolism, suggesting that bottlenecks in xylose fermentation are not always due to cofactor preferences. Finally, we expressedXYLgenes from multipleScheffersomycesspecies in a strain ofSaccharomyces cerevisiae. RecombinantS. cerevisiaeexpressingXYL1fromScheffersomyces xylosifermentans, which encodes an XR without a cofactor preference, showed improved anaerobic growth on xylose as the primary carbon source compared toS. cerevisiaestrain expressingXYLgenes fromScheffersomyces stipitis. ConclusionCollectively, our data do not support the hypothesis that xylitol accumulation occurs primarily due to differences in cofactor preferences between xylose reductase and xylitol dehydrogenase; instead, gene expression plays a major role in response to oxygen levels. We have also identified the yeastSc. xylosifermentansas a potential source for genes that can be engineered intoS. cerevisiaeto improve xylose fermentation and biofuel production.more » « less
-
Abstract Processing bodies (PBs) and stress granules (SGs) are membrane-less cellular compartments consisting of ribonucleoprotein complexes. Whereas PBs are more ubiquitous, SGs are assembled mainly in response to stress. PBs and SGs are known to physically interact and molecules exchange between the two have been documented in mammals. However, the molecular mechanisms underpinning these processes are virtually unknown in plants. We have reported recently that tandem CCCH zinc finger 1 (TZF1) protein can recruit MAPK signaling components to SGs. Here we have found that TZF1-MPK3/6-MKK4/5 form a protein-protein interacting network in SGs. The mRNA decapping factor 1 (DCP1) is a core component of PBs. MAPK signaling mediated phosphorylation triggers a rapid reduction of DCP1 partition into PBs, concomitantly associated with an increase of DCP1 assembly into SGs. Furthermore, we have found that plant SG marker protein UBP1b (oligouridylate binding protein 1b) plays a role in maintaining DCP1 in PBs by suppressing the accumulation of MAPK signaling components. Together, we propose that MAPK signaling and UBP1b mediate the dynamics of PBs and SGs in plant cells.more » « less
-
We investigated the activity of the tuberculosis drug SQ109 against 16 fungal pathogens: Candida albicans, C. auris, C. glabrata, C. guilliermondi, C. kefyr, C. krusei, C. lusitaniae, C. parapsilosis, C. tropicalis, Cryptococcus neoformans, Rhizopus spp., Mucor spp., Fusarium spp., Coccidioides spp., Histoplasma capsulatum and Aspergillus fumigatus. MIC values varied widely (125 ng/mL to >64 μg/mL) but in many cases we found promising (MIC ∼ 4 μg/mL) activity as well as MFC/MIC ratios of ∼ 2. SQ109 metabolites were inactive. The activity of 12 analogs of SQ109 against Saccharomyces cerevisiae correlated with protonophore uncoupling activity, suggesting mitochondrial targeting, consistent with the observation that growth inhibition was rescued by agents which inhibit ROS species accumulation. SQ109 disrupted H+/Ca2+ homeostasis in S. cerevisiae vacuoles, and there was synergy (FICI ∼ 0.26) with pitavastatin, indicating involvement of isoprenoid biosynthesis pathway inhibition. SQ109 is, therefore, a potential antifungal agent with multitarget activity.more » « less
-
Every fungal cell is encapsulated in a cell wall, essential for cell viability, morphogenesis, and pathogenesis. Most knowledge of the cell wall composition in fungi has focused on ascomycetes, especially human pathogens, but considerably less is known about early divergent fungal groups, such as species in the Zoopagomycota and Mucoromycota phyla. To shed light on evolutionary changes in the fungal cell wall, we studied the monosaccharide composition of the cell wall of 18 species including early diverging fungi and species in the Basidiomycota and Ascomycota phyla with a focus on those with pathogenic lifestyles and interactions with plants. Our data revealed that chitin is the most characteristic component of the fungal cell wall, and was found to be in a higher proportion in the early divergent groups. The Mucoromycota species possess few glucans, but instead have other monosaccharides such as fucose and glucuronic acid that are almost exclusively found in their cell walls. Additionally, we observed that hexoses (glucose, mannose and galactose) accumulate in much higher proportions in species belonging to Dikarya. Our data demonstrate a clear relationship between phylogenetic position and fungal cell wall carbohydrate composition and lay the foundation for a better understanding of their evolution and their role in plant interactions.more » « less
An official website of the United States government
